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Examiner and Judge Designs in 
Economics: A Practitioner’s Guide†

Eric Chyn, Brigham Frandsen, and Emily Leslie*

This article provides empirical researchers with an introduction and guide to research 
designs based on variation in judge and examiner tendencies to administer treatments 
or other interventions. We review the basic theory behind this research design, outline 
the assumptions under which the design identifies causal effects, describe empirical 
tests of the conditions for identification, and discuss trade-offs associated with choices 
researchers must make for estimation. We demonstrate concepts and best practices in 
an empirical case study that uses an examiner tendency research design to study the 
effects of pretrial detention. ( JEL C21, C26, K14, K41)

1.  Introduction

In 1932, criminologists in New Jersey documented wide disparities in the sentencing ten-
dencies of trial judges. The most severe judge imprisoned 57.7 percent of the convicted 

defendants randomly assigned to their courtroom, and the most lenient only 33.6  percent 
(Gaudet, Harris, and St John 1932). The same study also described an early experiment in 
which over a hundred mathematics teachers were asked to grade the same exam, producing 
scores that ranged from 28 to 92. While variation in decision-maker tendencies raises issues of 
fairness, it also provides a convincing empirical strategy.

In the past two decades, researchers have begun using disparities among judges and other 
decision-makers like those documented nearly a century ago to identify causal effects in 
nonexperimental settings. In pioneering work, Kling (2006) estimated the impact of incarcer-
ation length on post-release labor market earnings by leveraging plausibly exogenous variation 
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in sentencing arising from the rules that assign offenders to judges.1 Often referred to as the 
“judge fixed effects” or “judge leniency” design, this approach—hereafter called the “examiner 
tendency” design—has been used in at least 136 studies across a variety of settings involving 
different types of decision-makers (see Supplemental Appendix Table A1). Recent examples 
include studies of the effects of pretrial detention, consumer bankruptcy, foster care, disability 
benefits, patents, medical diagnoses, and health treatments.

The key ingredient in this research design is that examiners with different tendencies expose 
comparable individuals to different treatments or interventions. In the ideal scenario, admin-
istrative procedures ensure that assignment to examiners is independent of other factors that 
determine the outcome besides the treatment. In addition, examiners ideally should affect out-
comes only through the treatment of interest. Quasi-random assignment to examiners mimics 
random assignment to treatment and control groups in a randomized controlled trial (RCT).

This paper aims to provide an up-to-date overview of examiner tendency designs and cre-
ate a guide for researchers interested in applying this method. Our overview is motivated by 
recent methodological work and the fact that there is no single comprehensive summary of 
examiner tendency designs. We aim to clarify the conditions under which examiner tendency 
designs succeed or fail. Moreover, we hope to provide a guide for common implementation 
decisions that are not (currently) covered in standard econometric texts.

To set the stage for the rest of the paper, the following overview highlights our key points 
about examiner tendency designs:

•	The validity of the examiner tendency design rests not only on random assign-
ment (or conditional random assignment), but also on the plausibility that 
exclusion and monotonicity conditions hold. Exclusion requires that examiners 
influence outcomes only through the treatment of interest, and monotonicity requires 
that an individual treated by an examiner with a lower propensity to treat would surely 
be treated by an examiner with a higher propensity. When these conditions hold, instru-
mental variables (IV) estimation identifies a proper weighted average (i.e., one that uses 
nonnegative weights) of local average treatment effects (LATEs). This weighted aver-
age reflects causal effects for individuals who would have received a different treatment 
status if they had been assigned to a different examiner. In addition, the strictest version 
of monotonicity—pairwise monotonicity—allows identification of marginal treatment 
effects (MTEs). Under a weaker version, average monotonicity, which allows for vio-
lations of pairwise monotonicity, the IV estimand still has a causal interpretation but 
MTEs are no longer identified.

•	When examiners affect outcomes through multiple treatments, the design fails 

to identify causal effects without strong conditions on how outcomes respond 
or how examiners decide treatments. If outcomes respond to treatments linearly 
and with constant effects, linear IV identifies them as long as the number of treat-
ments does not exceed the number of examiners and examiners vary sufficiently in their 
propensities. Outside of the constant treatment effects framework, however, linear IV 
only identifies proper weighted average effects under stringent—and, in many cases, 

1 In earlier work, Waldfogel (1995) leveraged variation across judges to calibrate a structural model and study the selec-
tion of cases for trial.
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difficult to motivate—conditions on how examiners allocate individuals to treatments 
(Humphries et al. 2024; Bhuller and Sigstad 2024).

•	Jackknife instrumental variables estimation (JIVE) and related approaches 
eliminate many-instruments bias that could distort IV estimation when there 
are many examiners. In the simple case with no additional covariates, JIVE is equiva-
lent to the common practice of IV estimation using a leave-out mean as the instrument. 
When there are additional exogenous covariates, the improved jackknife procedure 
(IJIVE) proposed by Ackerberg and Devereux (2009) or the unbiased jackknife estima-
tor (UJIVE) proposed by Kolesár (2013) ensures that covariates are handled consistently 
in the first and second stages and eliminates biases due to covariate effects. When indi-
viduals are assigned to examiners in clusters or groups, the jackknife leave-out procedure 
should be implemented at the cluster level (Frandsen, Leslie, and McIntyre 2023).

•	Whether clustering is necessary and, if so, the appropriate level at which to 
compute standard errors depends on how individuals are assigned to exam-
iners. For example, if each individual is separately randomized to an examiner, no 
clustering is necessary. If individuals are assigned to examiners in batches or shifts (and 
individuals are not randomly assigned to the batches), inference should be clustered at 
the batch or shift level (Abadie et al. 2023).

•	While the conditions for identification ultimately rest on institutional and eco-
nomic foundations, specification tests can empirically examine whether they 
are plausible. Familiar balance tests from the RCT methodology can be used to assess 
random assignment to examiners. Classical overidentification tests (e.g., Sargan 1958) 
probe the exclusion restriction in a linear framework. Recently proposed procedures 
test whether exclusion and monotonicity conditions hold when effects are heteroge-
neous, including Kitagawa (2015), Norris, Pecenco, and Weaver (2021), and Frandsen, 
Lefgren, and Leslie (2023). We do not recommend the common practice of screening 
based on whether the first-stage ​F​-statistic exceeds a threshold value. Such screening 
can exacerbate distortions from weak instruments. A valid alternative is to screen on the 
sign of the first-stage in-sample correlation between the JIVE instrument and treatment 
(Angrist and Kolesár 2024). Below we provide simulation-based evidence to support this 
recommendation.

The remaining sections of the paper are organized as follows. Section 2 formally introduces 
an econometric framework based on constant treatment effects. Our initial focus on the case 
of constant treatment effects provides a foundation for discussing basic issues surrounding 
the examiner research design. To accompany our econometric framework, we introduce a 
conceptual model of examiner behavior to show the relationship between basic econometric 
conditions and examiner decision-making. In Section 3, we discuss estimation in the case of 
constant treatment effects. Our discussion highlights the importance of jackknife instrumen-
tal variables (JIVE) to address bias that can arise when attempting to use variation in exam-
iner tendencies in two-stage least squares (2SLS) estimation. As previewed, this section also 
highlights the need for internally consistent use of covariates in IV models. Section 4 covers 
inference, including guidance on clustering. Our discussion in Section 5 extends our formal 
framework to consider heterogeneous treatment effects and highlights the necessity of mono-
tonicity and exclusion restrictions for identifying conventional weighted average treatment 
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effect parameters. We also discuss key assumptions behind the estimation of marginal treat-
ment effects and identification in settings where examiners can influence outcomes through 
multiple channels. Section 6 reviews empirical tests that shed light on the plausibility that 
key identifying conditions hold. We provide a detailed guide to implementing examiner ten-
dency research designs by conducting a case-study analysis of the effects of pretrial detention 
in Section 7. The code and data for the empirical example are available online. Finally, we 
conclude in Section 8 with a discussion of recent innovations in the use of examiner research 
designs as well as areas for future research.

2.  Framework

In this section, we lay out a basic econometric and conceptual framework. We begin with 
a standard linear model with constant treatment effects. Although restrictive, the constant 
treatment effects framework provides a simple setting for discussing most of the practical 
issues around identification, estimation, and inference. In Section 5, we consider additional 
issues that arise when treatment effects are heterogeneous. The estimation and inference 
approaches that we propose for the simpler constant treatment effects case carry over to the 
more general heterogeneous treatment effects setting.

2.1	 A Basic Econometric Model

We seek to estimate the effects of a binary treatment, such as pretrial detention or place-
ment into foster care, denoted by the indicator ​​D​i​​​. Let ​​Y​i​​​(0)​​ be the potential outcome if indi-
vidual ​i​ is untreated, and let ​​Y​i​​​(1)​​ be the potential outcome if treated. Individual ​i​’s realized 
outcome is ​​Y​i​​  = ​ Y​i​​​(0)​ + ​(​Y​i​​​(1)​ − ​Y​i​​​(0)​)​​D​i​​​, and the effect of treatment for individual ​i​ is  
​​Y​i​​​(1)​ − ​Y​i​​​(0)​​. For now, we assume treatment effects to be constant: ​​Y​i​​​(1)​ − ​Y​i​​​(0)​  =  δ​ for all ​
i​ . In this case, the realized outcome can be represented as:

(1)	​​ Y​i​​  =  α + δ​D​i​​ + ​ε​i​​ ,​

where ​​ε​i​​  = ​ Y​i​​​(0)​ − E​[​Y​i​​​(0)​]​​, ​α  =  E​[​Y​i​​​(0)​]​​, and ​E​[​Y​i​​​(0)​]​​ denotes the expected value of out-
comes in the untreated state.

Despite the simplicity of the model, estimating ​δ​ poses a challenge. In many settings, treat-
ment status ​​D​i​​​ will be related to other determinants of the outcome, here captured by ​​ε​i​​​. As a 
result, ​​D​i​​​ will be endogenous and ordinary least squares estimates of ​​δ ˆ ​​ will be biased.

We now assume that an examiner such as a judge determines each individual’s treatment sta-
tus and examiners may differ in their decisions. Let ​​J​i​​  ∈ ​ {1, …, k}​​ denote the judge to whom 
individual ​i​ is assigned. Let ​​D​i​​​(j)​​ be individual ​i​’s potential treatment status if assigned to judge ​
j​, and define judge ​j​’s propensity as ​p​( j)​  =  E​[​D​i​​​( j)​]​​. In our notation, ​j​ indexes specific judges 
and ​​J​i​​​ is a random variable corresponding to the judge to whom individual ​i​ is assigned.

While examiners affect treatment status, we assume they have no other effects on out-
comes—that is, an exclusion restriction assumption. To be precise about what this means, we 
expand the potential outcome notation above to reflect examiner assignment. Let ​​Y​i​​​(0, j)​​ and ​​
Y​i​​​(1, j)​​ be individual ​i​’s untreated and treated potential outcomes if assigned to examiner ​j​, 
respectively. In words, the exclusion restriction assumption requires that changing examiner 
assignment from examiner ​j​ to ​​j ′ ​​ does not change either of an individual’s potential outcomes. 
Formally, this condition can be expressed as follows:
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ASSUMPTION 1 (Exclusion Restriction): ​​Y​i​​​(d, j)​  = ​ Y​i​​​(d, ​j ′ ​)​  = ​ Y​i​​​(d)​​ for ​d  ∈ ​ {0, 1}​​ and all ​
j, ​j ′ ​  ∈ ​ {1, …, k}​​ and for all ​i​.

To identify ​δ​ in equation (1), we assume random assignment of individual ​i​ is to one of the 
k-many examiners. This ensures that examiners receive comparable case mixes and any dif-
ferences in the probability of treatment between judges are due to differences in examiner 
propensities rather than differences in the individuals assigned to the examiners.2 The random 
assignment assumption is formally expressed as:

ASSUMPTION 2 (Examiner Random Assignment): ​​(​Y​i​​​(0)​, ​Y​i​​​(1)​, ​​{​D​i​​​( j)​}​​ 
j=1

​ 
k
 ​)​​ are jointly 

independent of ​​J​i​​​.

This assumption means that judge assignment is unrelated to an individual’s potential out-
comes or potential treatment status.

Random assignment to examiners means that we can identify examiner propensities 
as simply the average treatment status among individuals assigned to each examiner: ​p​( j)​ 
=  E​[​D​i​​ | ​J​i​​  =  j]​​. Equivalently, if we define ​​Z​i​​​ to be a ​k × 1​ vector of examiner indicators, we 
can express propensities in terms of the following regression equation:

(2)	​​ D​i​​  = ​ Z​ i​ ′​ π + ​ν​i​​ ,​

where ​E​[​ν​i​​ | ​Z​i​​]​  =  0​ by definition. The propensity of the examiner to whom individual ​i​ is 
assigned is given by ​p​(​J​i​​)​  =  E​[​D​i​​ | ​Z​i​​]​  = ​ Z​ i​ ′​ π​. The treatment residual, ​​ν​i​​​, captures every-
thing that determines treatment status besides the assigned examiner. For example, if ​​D​i​​​ were 
an indicator for pretrial release, ​​ν​i​​​ might include factors like prior criminal history, the severity 
of the charge, and other characteristics of the defendant that bail judges might take into con-
sideration when deciding on release or detention. These other factors may also influence the 
outcome—that is, ​​ν​i​​​ and ​​ε​i​​​ may be correlated. For example, defendants with a prior criminal 
history may be more likely to be detained prior to trial and more likely to be convicted. This 
correlation is why an ordinary least squares (OLS) regression based on equation (1) is likely to 
obtain biased estimates.

The outcome equation (1) and treatment equation (2) fit into the standard linear instrumen-
tal variables framework. Given the exclusion restriction and examiner random assignment, 
instrumental variables estimators can consistently estimate the parameter ​δ​ provided exam-
iners vary in their treatment propensity. At a minimum, this requires that there exists at least 
one pair of examiners whose propensities differ from each other’s, as the following assumption 
makes precise:

ASSUMPTION 3 (Nontrivial Variation in Propensities): For some ​μ  >  0​ there exist examin-
ers ​j, ​j ′ ​  ∈ ​ {1, …, k}​​ such that ​​|p​( j)​ − p​( ​j ′ ​)​|​  ≥  μ​ and ​min​{Pr​(​J​i​​  =  j)​, Pr​(​J​i​​  = ​ j ′ ​)​}​  ≥  μ​.

2 In some contexts, examiners or judges may be conditionally randomly assigned. For example, defendants charged with 
felonies might be assigned to a different set of judges from those charged with misdemeanors. In this case, the analysis 
should control for the covariates conditional on which judges are randomly assigned. Section 3.3 discusses how to incorpo-
rate covariates.
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The exclusion restriction, examiner random assignment, and nontrivial variation in propen-
sities satisfy the traditional instrumental variables requirements of exogeneity and relevance.3 
As a result, the treatment effect ​δ​ is identified by the usual instrumental variables estimand:

(3)	​ δ  = ​  
Cov​(​Y​i​​, p​(​J​i​​)​)​

  ____________  
Cov​(​D​i​​, p​(​J​i​​)​)​

 ​.​

Equation (3) shows that ​δ​ is identified. Note that it is not an estimator because the expression 
involves population covariances and true judge propensities—neither of which are observed. 
Section 3 covers estimation in this baseline case when the treatment of interest has constant 
effects. We subsequently discuss causal inference when treatment effects are heterogeneous 
and introduce monotonicity assumptions (which become necessary for identification when 
effects are not constant) in Section 5.

2.2	 Conceptual Model of Examiner Decision-Making

In this section, we lay out a simple conceptual framework that models examiner decisions as 
a cost-benefit problem.4 The solution to the decision problem is a threshold-crossing rule that 
compares the probability that treatment has a positive net benefit to a cutoff value. This cutoff 
value may vary across examiners because of differences in preferences or information. For 
concreteness, we frame the model in the context of judges deciding over pretrial detention.

Let ​​D​i​​​( j)​​ denote judge ​j​’s decision for defendant ​i​: ​​D​i​​​( j)​  =  1​ when the decision is to 
detain and ​​D​i​​​( j)​  =  0​ when the decision is to release. Judges value preventing defendants 
from engaging in misconduct prior to trial, such as failing to show up for the trial or commit-
ting crimes between the arrest and trial. Let ​​θ​i​​​ be a binary indicator for whether defendant ​i​ 
would engage in misconduct if released. Of course, not all defendants would engage in mis-
conduct if released, and judges also value allowing defendants their freedom while they await 
trial. We represent judge ​j​’s preferences over these competing values using the following util-
ity function:

	​​ U​j​​​(d; ​θ​i​​)​  = ​​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​​​ 

0

​ 

,

​ 

​θ​i​​  =  0, d  =  0

​  
−​a​j​​​ 

,
​ 
​θ​i​​  =  1, d  =  0

​  −​b​j​​
​ ,​ ​θ​i​​  =  0, d  =  1​  

​c​j​​

​ 

,

​ 

​θ​i​​  =  1, d  =  1

​​, ​a​j​​  ≥  0, ​b​j​​  ≥  0, ​c​j​​  ≥  max​{−​a​j​​, −​b​j​​}​.​

This utility function means that judge ​j​ incurs a cost of ​​a​j​​​ if a defendant who would engage in 
misconduct is released, a cost ​​b​j​​​ if a defendant who would not have engaged in misconduct is 
detained, and a benefit ​​c​j​​​ if a defendant who would have engaged in misconduct is detained. 
The requirement that ​​c​j​​  ≥  max​{−​a​j​​, −​b​j​​}​​ reflects the intuition that judges prefer correct 

3 The nontrivial variation in propensity condition in assumption 3 is equivalent to the standard instrumental variables 
relevance condition. For instance, in Imbens and Angrist (1994), the condition is defined as the assumption that the con-
ditional expectation of treatment is a nontrivial function of the instrument. That is, ​피​[​D​i​​ | ​Z​i​​  =  w]​​ is a nontrivial function 
with respect to values ​w​ in the support of ​​Z​i​​​.

4 See Canay, Mogstad, and Mountjoy (2024) for an alternative model of examiner decision-making that is based on a 
generalized Roy model (Heckman and Vytlacil 2005).
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decisions to incorrect ones.5 We normalize the utility of releasing a defendant who would not 
have engaged in misconduct to zero.

If judges knew ​​θ​i​​​, the optimal decision rule would be clear: release if ​​θ​i​​  =  0​ and detain if ​​
θ​i​​  =  1​. But judges have no crystal ball and must make do with the information they have. We 
denote the information that judge ​j​ has about defendant ​i​ at the time of the arraignment hear-
ing by ​​v​ij​​​. The index ​j​ allows for the possibility that judges may differ in the information avail-
able to them or their skill at eliciting and interpreting the relevant information. We assume 
judges choose detention status by maximizing expected utility conditional on their observed 
information:

	​​ D​i​​​( j)​  =  arg ​ max​ 
d∈​{0,1}​

​​ E​[​U​j​​​(d; ​θ​i​​)​ | ​v​ij​​]​.​

A little algebra shows that judge ​j​ will detain defendant ​i​ if the defendant’s probability of mis-
conduct, ​q​(​v​ij​​)​  ≔  Pr​(​θ​i​​  =  1 | ​v​ij​​)​​, exceeds a threshold, ​​τ​j​​​:

	​​ D​i​​​( j)​  =  1​(q​(​v​ij​​)​  ≥ ​ τ​j​​)​,​

where the threshold depends on the judge’s preferences:

	​​ τ​j​​  = ​  
​b​j​​ ___________ 

​a​j​​ + ​b​j​​ + ​c​j​​
 ​.​

The threshold rule captures the intuition that judges will be more hesitant to detain defen-
dants (i.e., they will apply a higher threshold) when they weigh the costs of detaining a defen-
dant who would not engage in misconduct more heavily—that is, when ​​b​j​​​ is larger. Judges 
who weigh the cost of releasing a defendant who engages in misconduct more heavily (larger ​​
a​j​​​) or who value detaining a defendant who would have engaged in misconduct more strongly 
(larger ​​c​j​​​) will be more likely to detain defendants. A judge’s propensity in this framework is

	​ p​( j)​  =  Pr​(q​(​v​ij​​)​  ≥ ​ τ​j​​)​.​

Let’s now consider the interpretation of the basic identifying assumptions in this conceptual 
framework of judge decision-making. The exclusion restriction in this setting means that the 
judge’s detention decision, ​​D​i​​​(j)​​, is the only way in which defendant ​i​’s outcomes depend on 
the judge assignment. It requires that judges differ in no other decision or characteristic that 
affects defendant outcomes. For example, if arraignment judges not only make detention deci-
sions, but also make decisions regarding court-appointed legal representation, then the exclu-
sion restriction would be violated if court-appointed legal representation affects outcomes.6

5 In the case that ​​c​j​​  <  max​{−​a​j​​, −​b​j​​}​​, it would mean that the judge prefers to either wrongly release or wrongly detain 
a defendant relative to correctly detaining a defendant.

6 Similarly, if judges differ in their tendency to warn or verbally admonish defendants, then there could be violations of 
exclusion if these types of judicial behavior matter for defendant outcomes.
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Examiner random assignment in this setting means that defendants who have particular 
characteristics or potential outcomes have the same likelihood of being assigned to any partic-
ular judge as defendants who have other characteristics or potential outcomes. Judge random 
assignment would be violated if, for example, certain judges take cases at specific times of day 
or days in the week, or if certain judges “specialize” in particular kinds of cases.

Finally, nontrivial variation in propensities means that judges differ in their preferences 
(i.e., the relative costs of releasing a defendant who engages in misconduct or detaining a 
defendant who would not have), information, or skill in eliciting and interpreting the relevant 
information. Judges must also have some degree of discretion in the treatment decision. A 
setting in which all judges see the same information about a given defendant and where their 
decisions are dictated by rules or formulas may not give rise to nontrivial variation in propen-
sities across judges.

3.  Estimation

3.1	 A Two-Stage Least Squares

A natural starting place for estimation is to use 2SLS to compute the sample counterpart to 
the instrumental variables estimand in equation (3). The first stage, given by equation (2), can 
be estimated by OLS:

	​​ D​i​​  = ​ Z​ i​ ′​ π + ​ν​i​​ .​

The resulting first-stage fitted values are ​​p ˆ ​​(​J​i​​)​  = ​ Z​ i​ ′​ ​π ˆ ​​ and serve as an instrument for ​​D​i​​​ in the 
structural equation:

	​​ Y​i​​  =  α + ​​δ ˆ ​​​ 2SLS​ ​D​i​​ + ​​ε ˆ ​​i​​ ,​

where ​​​ε ˆ ​​i​​​ is the 2SLS residual and

	​​​ δ ˆ ​​​ 2SLS​  = ​  
​̂  Cov​​(​p ˆ ​​(​J​i​​)​, ​Y​i​​)​

  ____________  
​̂  Cov​​(​p ˆ ​​(​J​i​​)​, ​D​i​​)​

 ​.​

As long as the conditions in a given empirical setting satisfy the identification assumptions 
discussed above as well as standard textbook conditions, such as independence across obser-
vations and a large number of observations per examiner, then ​​​δ ˆ ​​​ 2SLS​​ will be approximately nor-
mally distributed with a mean centered on ​δ​. The associated standard errors can be estimated 
using common statistical packages.

However, an important consideration is that many applications of the examiner tendency 
design feature a large number of examiners and relatively few cases per examiner. The text-
book approximation fails in such settings: 2SLS is no longer centered on the true causal effect ​
δ​, but is biased toward the OLS estimand (i.e., ​Cov​(​Y​i​​, ​D​i​​)​/Var​(​D​i​​)​​). The bias of 2SLS in this 
case is an example of the many-instruments bias documented by Bekker (1994). Under an 
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asymptotic approximation where the ratio of the number of examiners, ​k​, to the sample size 
converges to a constant, ​κ​, the probability limit of 2SLS is

	​​​ δ ˆ ​​​ 2SLS​  →  δ + κ​
(

​  ​σ​εν​​ _____________  
​σ​ D​ 2 ​ − ​(1 − κ)​ ​σ​ ν​ 2​

 ​
)

​,​

where ​​σ​εν​​​ is the covariance between ​​ε​i​​​ (the error term in the outcome equation) and ​​ν​i​​​ (the 
error term in the first-stage equation), and the terms ​​σ​ D​ 2 ​​ and ​​σ​ ν​ 2​​ are the variances of ​​D​i​​​ and ​​
ν​i​​​. As the number of examiners gets larger relative to the sample size (i.e., as ​κ​ approaches 
one), the bias of 2SLS approaches ​​σ​εν​​/​σ​ D​ 2 ​​, which is the bias of OLS. The approximation that ​
k/n  →  κ​ is not meant to be a description of the actual data collection process or a promise 
about future data collection; rather, it’s meant to capture better the behavior of the estimator 
in finite samples.

The bias of 2SLS arises with many examiners even if the conditions in a setting satisfy the 
standard IV assumptions (i.e., random assignment, exclusion, relevance). The bias comes from 
the outsized influence ​​D​i​​​ has on ​​p ˆ ​​(​J​i​​)​​ when there are few cases per examiner. Recall that ​​Z​i​​​ is a 
set of indicator variables, and the estimate ​​p ˆ ​​(​J​i​​)​  = ​ Z​ i​ ′​ ​π ˆ ​​ is the sample average treatment status 
among individuals assigned to examiner ​​J​i​​​. Importantly, this sample average includes individual ​i​ , 
which implies that this sample average will be correlated with ​​D​i​​​. This correlation will be stron-
ger if there are fewer cases assigned to that examiner. When there are few examiners relative to 
the sample size—equivalently, when there are many cases per examiner—we can safely ignore 
this extra correlation between ​​D​i​​​ and ​​p ˆ ​​(​J​i​​)​​. When there are many examiners, the endogenous 
variation in ​​D​i​​​—the reason for employing an IV strategy in the first place—contaminates ​​p ˆ ​​(​J​i​​)​​.

3.2	 The Case for JIVE

A solution to the many-instruments bias of 2SLS in settings with many examiners is JIVE 
(Angrist, Imbens, and Krueger 1999). JIVE cleans up the contamination in ​​p ˆ ​​(​J​i​​)​​ due to the 
influence of ​​D​i​​​ by replacing it with ​​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​  = ​ Z​ i​ ′​ ​​π ˆ ​​−i​​​, where

(4)	​​​ π ˆ ​​−i​​  = ​​ (​∑ 
l≠i

​ 
 

 ​​ ​Z​l​​ ​Z​ l​ ′​)​​​ 
−1

​ ​∑ 
l≠i

​ 
n

 ​​ ​Z​l​​ ​D​l​​ .​

In the simplest case with no covariates, ​​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​​ is simply the sample average treatment status 
among individuals assigned to examiner ​​J​i​​​ besides individual ​i​. The JIVE estimate of the treat-
ment effect is then the usual just-identified IV formula, using ​​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​​ as a single instrument:

	​​​ δ ˆ ​​​ 𝐽𝐼𝑉𝐸​  = ​  
​̂  Cov​​(​Y​i​​, ​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​)​

  ____________  
​̂  Cov​​(​D​i​​, ​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​)​

 ​.​

The jackknife remedy for IV bias now appears in nearly every published study using the exam-
iner tendency design, although it usually goes by the name “leave-out mean” rather than jack-
knife.7 For example, Dahl, Kostøl, and Mogstad (2014) estimate the leniency of the disability 

7 Over 90 percent of the studies we survey in Supplemental Appendix Table A1 used a jackknife or leave-out procedure 
for calculating the examiner propensity measure.
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insurance examiner assigned to each case by calculating the examiner’s tendency among all 
their other cases. This “leave-out mean examiner propensity measure” is identical to JIVE’s 
version of the first-stage fitted value when no additional covariates are involved. More care is 
required when there are additional covariates (see Section 3.3).

The jackknife or leave-out procedure must be modified when individuals are assigned to 
examiners in clusters, such as batches or work shifts. In this case, the reason is that unobserved 
determinants of outcomes and treatment status—that is, ​​ε​i​​​ and ​​ν​i​​​—may be correlated within 
clusters. If individuals ​i​ and ​j​ share a cluster, then endogenous variation from individual ​j​’s 
treatment status, ​​D​j​​​, contaminates individual ​i​’s fitted value, ​​​p ˆ ​​i​​​, in the usual observation-level 
jackknife procedure. This contamination biases JIVE toward OLS for the same reasons that 
2SLS is biased. The solution is to estimate ​i​’s fitted value, ​​​p ˆ ​​i​​​, leaving out observation ​i​’s entire 
cluster, not just observation ​i​ itself, a procedure called CJIVE. Frandsen, Leslie, and McIntyre 
(2023) provide detailed discussion of this estimator. Denoting the set of observations in indi-
vidual ​i​’s cluster as ​​​i​​​, the CJIVE fitted value is defined as: ​​​p ˆ ​​ i​ CJIVE​  = ​ Z​ i​ ′​ ​​π ˆ ​​−​​i​​​​​, where

	​​​ π ˆ ​​−​​i​​​​  = ​​ (​ ∑ 
l∉​​i​​

​ 
 

 ​​ ​Z​l​​ ​Z​ l​ ′​)​​​ 
−1

​ ​  ∑ 
l∉​​i​​

​ 
n

 ​​ ​Z​l​​ ​D​l​​ ,​

and the CJIVE estimator is

	​​​ δ ˆ ​​​ 𝐶𝐽𝐼𝑉𝐸​  = ​  
​̂  Cov​​(​Y​i​​, ​​p ˆ ​​ i​ 𝐶𝐽𝐼𝑉𝐸​)​

  _____________  
​̂  Cov​​(​D​i​​, ​​p ˆ ​​ i​ 𝐶𝐽𝐼𝑉𝐸​)​

 ​.​

Note that the CJIVE estimator requires several clusters per examiner, since an exam-
iner with only one assigned cluster would have no observations from which to estimate a 
cluster-jackknifed propensity. Clustered assignment to examiners also affects inference, an 
issue we explore in detail in Section 4.1.

3.3	 Covariates

It is often helpful to control for a set of covariates ​​X​i​​​ because of the belief that conditioning 
is required for identification in a given setting, or a desire to increase precision. For exam-
ple, suppose one set of rotating judges presides over weekend arraignments, and another 
set over weekday arraignments. Because judges are randomly assigned conditional on week-
end or weekday, the vector ​​X​i​​​ should include a weekend indicator. Similarly, suppose that 
prior criminal history strongly predicts an outcome of interest. Including criminal history in ​​X​i​​​ 
could improve the precision of 2SLS estimates. While these considerations motivate the use 
of covariates, it may be desirable to omit some factors that predict the outcome (but are not 
needed to ensure conditional random assignment) from ​​X​i​​​ in order to use these in balance 
tests (see Section 6). Factors that may be affected by treatment or judge assignment should 
not be included in ​​X​i​​​ because their inclusion may introduce bias into the estimator.

Researchers must make a modeling choice for covariates. One possibility is to condition 
nonparametrically on covariates by performing estimation separately for each covariate value. 
This approach spares the researcher from taking a stand on functional form, but it is only 
feasible for discrete covariates that take on few values and have many observations per cell. 
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The more standard approach is to assume additive separability between the treatment and 
covariates. Formally, one assumes that the realized outcome satisfies:

(5)	​​ Y​i​​  =  δ​D​i​​ + ​X​ i​ ′​ β + ​ε​i​​ ,​

where we redefine ​​ε​i​​  = ​ Y​i​​​(0)​ − 피​[​Y​i​​​(0)​ | ​X​i​​]​​.
The presence of covariates complicates the leave-out or jackknife remedy for 

many-instruments bias discussed above. Two recent estimators adapt JIVE to the case with 
covariates: the unbiased jackknife estimator (UJIVE) proposed by Kolesár (2013) and the 
improved jackknife (IJIVE) procedure proposed by Ackerberg and Devereux (2009). UJIVE 
proceeds as JIVE but features an important modification: The jackknifed first stage regression 
in equation (4) now includes covariates. Following the jackknifed first stage regression, the 
covariates are partialled out of the fitted values for ​​D​i​​​, also using jackknifed regressions. IJIVE, 
on the other hand, partials out covariates from the outcome, treatment, and examiner dum-
mies prior to the jackknifed first-stage estimation of equation (4). Notably, UJIVE remains 
consistent even when the number of covariates is large (Kolesár 2013), while IJIVE may not 
be consistent. This theoretical edge suggests UJIVE should be considered the default esti-
mator.8 With either approach, researchers who employ these methods ensure that covariates 
are handled consistently in the first and second stages. A researcher who conditions on one 
set of covariates in constructing the examiner propensities and a different set of covariates 
when estimating effects in a second stage can unwittingly impose spurious exclusion restric-
tions, biasing the estimates. Both UJIVE and IJIVE adapt to the case with clustering naturally 
by simply replacing the jackknife regressions in both procedures with cluster-level jackknife 
regressions.

4.  Inference

Standard errors, hypothesis tests, and confidence intervals based on the usual 
heteroskedasticity-robust IV variance formula provide reliable inference for standard 
cross-sectional data under conditions that should be satisfied in most empirical settings with 
examiner-based designs (Ackerberg and Devereux 2009). The conditions include that there 
are a sufficient number of cases per examiner, individuals are assigned independently to exam-
iners (as opposed to batches of individuals assigned as a group to an examiner), and examiners 
vary sufficiently in their propensities. Heteroskedasticity-robust variance formulas accommo-
date binary outcomes such as conviction or recidivism that are inherently heteroskedastic 
measures and appear commonly in examiner-based designs. The IV procedures built into sta-
tistical software applications like Stata produce estimates of these variances (provided the user 
has constructed ​​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​​ as above or the variants such as IJIVE or UJIVE for the case of designs 
that rely on covariates).9

Occasionally, however, an empirical setting may violate these conditions and inference 
requires more care. One concern is that the usual standard errors can be misleading when 

8 At the same time, our empirical example described in Section 7 shows that UJIVE and IJIVE give similar results (see 
Table 4).

9 This is true even though ​​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​​ is estimated. Wooldridge (2010) outlines fairly general conditions under which generated 
instruments do not affect inference.
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there are few cases per examiner. Intuitively, the reason is that ​​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​​ will be very noisily esti-
mated for observations assigned to examiners with few cases and the estimation error will be 
correlated across observations. One effective remedy is to restrict the sample to examiners 
with sufficiently many cases. For example, the case study in Section 7 restricts the sample to 
bail judges with at least 200 cases. We recommend showing robustness to alternative choices 
of the cutoff, as we do in Table 5. Studies that do not enjoy the luxury of a large number of 
cases per examiner may need to employ the many-instrument adjustments to jackknife instru-
mental variables standard errors suggested by Evdokimov and Kolesár (2019). The next sub-
sections discuss how to approach violations of the two other standard conditions for inference: 
independent examiner assignment and strong identification.

4.1	 Clustering

Many applications, however, depart from the standard cross-sectional setting with 
independent assignment to examiners. In these cases, inference based on the usual 
heteroskedasticity-robust formulas could be misleading. Instead, it may be necessary to use 
cluster-robust inference.

Cluster-robust inference requires deciding the level at which to cluster. In the design-based 
framework described in Abadie et al. (2023), the level at which to cluster is dictated by the 
level at which assignment to examiners occurs.10 From this perspective, the randomness that 
generates sampling variation in the estimates stems from the examiner assignment mecha-
nism. That is, in hypothetical repeated samples, the estimates of the treatment effect vary 
because a given individual’s assigned examiner can change, thereby affecting the potential 
outcomes that are revealed for each individual. The cluster-robust standard error formula 
captures the sampling variation arising from clustered assignment to examiners. For example, 
if all individuals in a batch or a work shift are randomly assigned to the same examiner, then 
inference should be clustered at the batch or shift level.11

By contrast, many practitioners cluster at the examiner level, perhaps out of a desire to be 
conservative by clustering at a coarse level or because they are positing that error terms are 
correlated among observations assigned to the same examiner.12 In the design-based approach 
to inference recommended by Abadie et al. (2020) and Abadie et al. (2023), the correlation 
structure of unobserved determinants of the outcome is irrelevant for the clustering decision. 
The clustering level is determined by an institutional fact: the level at which individuals were 
assigned to judges.

4.2	 Inference and Weak Identification

Weak identification is another potential concern for inference in examiner tendency designs. 
In this setting, weak identification means examiners vary little in their propensities to assign 
individuals to treatment. In some IV settings, the conventional asymptotic approximations 
break down under weak identification and the usual standard errors can yield misleading 

10 The design-based approach to inference is distinct from model-based inference. In the latter, sampling variation in 
estimates is governed by an assumed joint distribution of the error terms specified by the model.

11 Note that if inference is clustered, then the jackknife estimation should also be clustered at the same level.
12 Notable examples of clustering at the examiner level include Dobbie, Goldin, and Yang (2018) and Bald et al. (2022).
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inference (Andrews, Stock, and Sun 2019b; Mikusheva and Sun 2021). This section discusses 
when weak identification is likely to cause practical problems and how to address weak iden-
tification in problematic cases.

The weak identification problem is distinct from the many-instruments problem discussed 
in Section 3. Even if identification is strong (i.e., examiners vary substantially in their propensi-
ties), 2SLS using examiner dummies as instruments suffers from many-instruments bias. JIVE 
eliminates the many-instruments bias, but does not necessarily solve the weak-identification 
problem. It does, however, allow us to apply recent econometrics findings on how to deal with 
weak identification in single-instrument settings.13

Recent research has clarified that in single-instrument IV settings, like examiner designs 
using a JIVE instrument, weak identification substantially distorts estimation and inference 
only when the degree of endogeneity—here, the correlation between ​​ν​i​​​ and ​​ε​i​​​—is very high.14 
Angrist and Kolesár (2024) show that the coverage of 95 percent confidence intervals is dis-
torted by at most 5 percentage points no matter how weak the instrument when the degree 
of endogeneity is less than about 0.76. The reason is that although weaker instruments lead to 
more bias, they also lead to larger standard errors and wider confidence intervals. When the 
degree of endogeneity is high enough, however, weak identification can substantially distort 
inference.

The large majority of IV specifications in recently published studies exhibit degrees of 
endogeneity below the danger zone of 0.76. The largest estimated degree of endogeneity 
encountered in the studies examined by Angrist and  Kolesár (2024) was 0.47. Lee et  al. 
(2023) analyzed a broader set of studies—every single-variable just-identified IV specification 
published in the American Economic Review, Econometrica, Journal of Political Economy, 
Quarterly Journal of Economics, and the Review of Economic Studies in 2021. Out of 89 such 
published specifications for which they could calculate the required statistics, 75 (84 percent) 
had an estimated degree of endogeneity below the 0.76 benchmark.15

The results in Angrist and Kolesár (2024) suggest, therefore, that in most empirical set-
tings, the usual IV standard errors and associated confidence intervals should be reliable, even 
when identification is weak. However, there are certainly empirically relevant scenarios where 
weak identification should not be ignored. What should a researcher to do in these cases? 
The recent econometrics literature suggests two strategies. First, Angrist and Kolesár (2024) 
suggest screening on the sign of the estimated first stage. In our case, this means proceeding 
with the analysis only if the covariance between treatment status and the JIVE instrument is 
positive, that is, ​​  Cov​​(​D​i​​, ​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​)​  >  0​. This intuitive requirement cuts the weak instruments 
bias roughly in half. This differs from the older rule of thumb to proceed only if the first stage 
F-statistic exceeds 10—a point that we discuss in detail in our simulation exercises below.16

13 Although the underlying examiner dummies are many, the JIVE fitted value (i.e., ​​​p ˆ ​​ i​ 𝐽𝐼𝑉𝐸​​) can be treated like a single 
instrument under certain conditions. See Bhuller et al. (2020) for additional discussion.

14 With either heteroskedasticity or dependence due to clustering, note that the degree of endogeneity is not simply the 
correlation between ​​ν​i​​​ and ​​ε​i​​​.

15 They estimate the degree of endogeneity via the sample correlation between first- and second-stage residuals.
16 Note that screening on the sign instead of the magnitude of the first-stage estimate could have implications if there 

are multiple screening criteria imposed in the publication process. For example, screening based on the sign alone implies 
that studies with less precision will “pass” an initial review. This could have implications for publication bias if reviewers also 
prioritize studies that reject the null at conventional statistical significance levels. Studies that produce empirical results 
with large standard errors will reject the null only when their estimated effects are large in magnitude.



Journal of Economic Literature, Vol. LXIII (June 2025)414

Second, in cases where the degree of endogeneity is very high, Lee et  al. (2023) offer 
adjusted critical values (i.e., different from 1.96) that will ensure confidence intervals maintain 
their advertised coverage. The adjustments depend on the first-stage F-statistic of the single 
instrument and the estimated degree of endogeneity. For example, if the first-stage F-statistic 
were 24 and the estimated degree of endogeneity were 0.8, their adjustment delivers a critical 
value of 4.017 for the interval’s lower bound and 2.56 for the upper bound.17 Alternatively, 
Mikusheva and Sun (2021) propose a first-stage test statistic specifically for jackknife instru-
mental variables estimators that can be used to determine if weak identification is a problem.

The recommendations above are supported by the theoretical analysis in Angrist and Kolesár 
(2024) and Lee et al. (2023). We now use simulations to illustrate their empirical relevance for 
examiner designs. In our simulations, we create 100 judges who each assign 100 defendants to 
a binary treatment. We generate individual treatment status ​​D​i​​​ and outcome ​​Y​i​​​ variables via a 
simplified and parameterized version of the conceptual model in Section 2.2. Specifically, in 
the simulations, individual ​i​’s treatment status when assigned to judge ​j​ is generated as ​​D​i​​  =  1​
(Φ​(​v​i​​)​  ≥ ​ τ​j​​)​​, where ​Φ​ is the standard normal cumulative distribution function (CDF) and ​​
v​i​​​ is a standard normal random variable. In terms of the conceptual model in Section 2.2, ​​v​i​​​ 
represents the examiners’ information about individual ​i​’s suitability for treatment and the 
function ​q​ is determined by ​Φ​. The simulation assumes that the judge thresholds ​​τ​j​​​ are evenly 
distributed over a range of width ​h​ centered on ​0.5​. Judge ​j​’s propensity to assign treatment 
is ​​p​j​​  =  1 − ​τ​j​​​, and thus judge propensities are also centered on ​0.5​ with range ​h​. The simu-
lations explore the consequences of weak identification by varying ​h​. The case when ​h​ is near 
zero corresponds to weak identification (as there is little variation between judges). The case 
of ​h  =  1​ corresponds to very strong identification (where the least and most strict judges 
have propensities of 0 and 1, respectively). Defendants are randomly assigned to each of the ​
k  =  100​ judges with equal probability. Defendant ​i​’s outcome is ​​Y​i​​  =  δ​D​i​​ + ​ε​i​​​, where ​​ε​i​​​ is 
a standard normal random variable. We generate ​​ε​i​​​ to have a correlation with ​​v​i​​​ equal to ​ρ​, 
which determines the degree of endogeneity of ​​D​i​​​. Across all simulations, we hold the treat-
ment effect constant at ​δ  =  0.3​.

Our exercise varies ​h​ from 0 to 1 in increments of 0.05 and simulates ​1,000​ samples for a 
given set of model parameters. In each sample, we construct a confidence interval for ​δ​ based 
on the point estimate and standard error from each the following four procedures: (i) 2SLS 
using judge dummies; (ii) JIVE; (iii) JIVE, screening on the first-stage F-statistic exceeding 10, 
a common benchmark (where the F-statistic is from regressing treatment on the JIVE fitted 
value); (iv) JIVE, screening on having a positive first-stage coefficient, an approach recom-
mended for IV from Angrist and Kolesár (2024).

Figure 1 illustrates how inference depends on instrument strength as well as the endoge-
neity specified in the data generating process. Panel A sets ​ρ  =  0.30​, a low degree of endog-
eneity, and panel B sets ​ρ  =  0.60​, a high degree of endogeneity. The y-axis measures our 
main statistic of interest: the fraction of samples associated with each value of ​h​ for which the 
confidence intervals exclude the true treatment effect. The x-axis corresponds to our measure 
of instrument strength, the propensity range across judges.

The main result from this analysis is that JIVE, whose rejection rate is plotted with a dashed 
line, never over-rejects, no matter how weak the instrument. This is consistent with similar 

17 The adjustment, dubbed “​VtF​” by Lee et al. (2023) can be implemented in Stata by following instructions on David 
Lee’s website: https://irs.princeton.edu/davidlee-supplementVTF.

https://irs.princeton.edu/davidlee-supplementVTF
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examiner tendency design simulation results provided in Bhuller et al. (2020, supplemental 
appendix D) and with the theoretical analysis in Angrist and Kolesár (2024). In contrast, a 
naive approach of using 2SLS with judge dummies (solid line) rejects the truth at a high rat-
when identification is weak, an illustration of the well-known inference distortion with weak 
instruments (Andrews, Stock, and Sun 2019).

What do we observe when using the common practice of screening on the first-stage 
F-statistic? The short-dashed line plots the rejection rate conditional on the JIVE first-stage 
F-statistic exceeding 10, a standard approach to avoid weak-instrument distortion.18 

18 Staiger and Stock (1997) propose a rule of thumb cutoff of 10 for weak instruments.
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Figure 1. Weak Instrument Simulation Exercise: IV Rejection Rate, Nominal 5 Percent Test

Notes: This figure plots simulated rejection rates as a function of instrument strength based on estimates 
and robust standard errors from the four estimation procedures indicated in the legend. The solid horizontal 
line indicates the nominal level of the test (0.05). The data are generated according to the simulation design 
described in the text. The sample size is 10,000 with 100 examiners and 100 cases per examiner. The simu-
lations with low degree of endogeneity set ​ρ  =  0.3​ and those with high degree of endogeneity set ​ρ  =  0.6​.
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Conditioning on the F-statistic leads to a rejection rate near 50 percent when the instrument 
is weak even when there is a low degree of endogeneity. Recent work suggests an alternative 
approach: researchers can use the usual standard errors provided that one conditions on the 
sample correlation between treatment and the jackknifed instrument being positive. Angrist 
and Kolesár (2024) provide evidence that, after screening on the sign of the estimated first 
stage, inference based on the usual standard errors is reliable. Our simulations bear this out: 
the dash-dotted curve shows that the rejection rate when conditioning on a positive first stage 
stays near the nominal level, no matter how weak the instrument.

Our recommendation is therefore not to screen on the first-stage F-statistic. As demon-
strated above, the common practice of screening on the first-stage F-statistic exceeding 10, or 
any other level, is unnecessary and can even be harmful. That said, in line with recommenda-
tions from Angrist and Kolesár (2024), there is little harm in checking that the JIVE instru-
ment’s first stage goes in the expected direction.19

5.  Extensions to the Basic Framework

5.1	 Heterogeneous Treatment Effects

The recommendations for estimation and inference thus far have all been in the context of 
a model with a constant treatment effect. While this model is a natural starting place, constant 
effects may be unrealistic in many empirical settings. In this section, we focus on the case of 
heterogeneous treatment effects and show that the recommendations for estimation and infer-
ence above carry through to this more realistic scenario. Let the treatment effect for person ​i​ 
be denoted by ​​δ​i​​  = ​ Y​i​​​(1)​ − ​Y​i​​​(0)​​. In the case of heterogeneous treatment effects, a common 
parameter of interest in the literature is a weighted average of treatment effects: ​피​[​w​i​​ ​δ​i​​]​/피​[​w​i​​]​​,  
for nonnegative weights ​​w​i​​​.

Heterogeneous treatment effects have important implications for interpreting the IV esti-
mand. Recall that the IV estimand is the covariance between assigned examiner propensity 
and individual outcomes divided by the variance of the examiner propensity:

(6)	​​ δ​2SLS​​  = ​  
피​[​(​Y​i​​ − 피​[​Y​i​​]​)​​(피​[​D​i​​ | ​J​i​​]​ − 피​[​D​i​​]​)​]​

   ____________________________   
피​[​​(피​[​D​i​​ | ​J​i​​]​ − 피​[​D​i​​]​)​​​ 

2
​]​
 ​.​

As discussed in Frandsen, Lefgren, and Leslie (2023), a setting that features random assign-
ment and satisfies the exclusion restriction implies that the expression in equation 6 can be 
written in terms of individual-level treatment effects as:

(7)	​​ δ​2SLS​​  = ​  
피​[​(​∑ j=1​ k ​​ ​λ​j​​​(p​( j)​ − ​p – ​)​​(​D​i​​​( j)​ − ​​D 

–
 ​​i​​)​)​​δ​i​​]​
    __________________________________   

피​[​∑ j=1​ k ​​ ​λ​j​​​(p​( j)​ − ​p – ​)​​(​D​i​​​( j)​ − ​​D 
–

 ​​i​​)​]​
 ​,​

19 Checking the sign of the first stage in the full sample serves a different purpose from checking that the sign of the 
first stage is positive in subsamples. The latter is a test of average monotonicity, discussed in more detail in Section 6. In 
contrast, the sign of the first stage in the full sample can only be negative if the variation in estimated jackknifed propensities 
is entirely driven by statistical noise, rather than differences in true propensities across judges.
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where ​​λ​j​​​ is the probability of being assigned to examiner ​j​, ​p( j)​ is the examiner propen-
sity to treat, ​​p – ​​ is the average propensity across all examiners (​​p – ​  = ​ ∑ j=1​ k ​​ ​λ​j​​ ​p​j​​​), and ​​​D 

–
 ​​i​​​ is person ​

i​’s expected treatment status across examiners (​​​D 
–

 ​​i​​  = ​ ∑ j=1​ k ​​ ​λ​j​​ ​D​i​​( j)​).
From this expression, we can see that the IV estimand is a weighted average of individual 

treatment effects. The weight for person ​i​ is equal to the following sum across all examin-
ers: ​​∑ j=1​ k ​​ ​λ​j​​​(p​(j)​ − ​p – ​)​​(​D​i​​​( j)​ − ​​D 

–
 ​​i​​)​​, which is proportional to the correlation across examiners 

between an individual’s potential treatment status and examiner propensity. As a result, the 
weight is largest for people whose potential treatment status is highly correlated with examiner 
propensity. Of course, some individuals can have a weight of zero: For example, those whom 
all examiners would assign to treatment (always takers) have ​​​D 

–
 ​​i​​  =  1​ and ​​D​i​​​( j)​  =  1​ for all ​

j​. Similarly, those who would not be assigned to treatment by any examiner (never takers) 
have ​​​D 

–
 ​​i​​  =  0​ and ​​D​i​​​( j)​  =  0​ for all ​j​, and these individuals will again receive zero weight. In 

general, the possibility that some individuals will have weights equal to zero implies that the 
IV estimand may not capture the effects most relevant to certain policy changes (Heckman 
and Vytlacil 2005).20

The only individuals who can receive nonzero weight are those whose treatment status is the 
subject of disagreement: those whom some examiners would assign to treatment and others 
would not. An examiner with an above average treatment propensity (​p​( j)​  > ​ p – ​​) who would 
assign a person to treatment (​​D​i​​​( j)​  =  1​) would have a positive term in the person’s weight 
summation, as would an examiner with a below average treatment propensity (​p​( j)​  < ​ p – ​​) who 
would not assign the person to treatment (​​D​i​​​( j)​  =  0​). 

The IV estimand has a reasonable causal interpretation when the weights are all nonnega-
tive. When might some weights be negative? A simple example with two examiners, ​1​ and ​2​, 
illustrates when this could occur. Suppose that these two examiners have equal caseloads (i.e., ​​
λ​1​​  = ​ λ​2​​  =  0.5​) and the treatment propensities for examiners 1 and 2 are ​p​(1)​  =  0.75​ and  
​p​(2)​  =  0.25​, respectively. This implies ​p​(1)​ − ​p – ​  =  0.25​ and ​p​(2)​ − ​p – ​  =  −0.25​. Consider 
an individual who would be treated only by the lower-propensity examiner (i.e., ​​D​i​​​(1)​  =  0​ 
and ​​D​i​​​(2)​  =  1​). In this individual’s case, ​​D​i​​​(1)​ − ​​D 

–
 ​​i​​  =  −0.5​ and ​​D​i​​​(2)​ − ​​D 

–
 ​​i​​  =  0.5​. In this 

scenario ​​λ​j​​​(p​( j)​ − ​p – ​)​​(​D​i​​​( j)​ − ​​D 
–

 ​​i​​)​  <  0​ for both judges, and individual ​i​ is weighted nega-
tively in the IV estimand. This is a problem, since the weighted average in equation (7) can 
yield values outside of the set of convex combinations of individual treatment effects if it 
includes some negative weights. For example, it could produce a negative value even if all 
individual treatment effects are positive.

A pairwise monotonicity assumption addresses exactly this kind of situation by requir-
ing that anyone who is treated by one examiner would also have been treated if assigned 
to an examiner of equal or greater propensity to treat. Formally, we represent this idea 
as:

ASSUMPTION 4 (Pairwise Monotonicity): For all ​j, ℓ  ∈ ​ {0, …, k}​​, either ​​D​i​​​( j)​  ≥ ​ D​i​​​(ℓ)​​ or ​​
D​i​​​( j)​  ≤ ​ D​i​​​(ℓ)​​ for each individual ​i​.

20 For example, consider a judicial context where a large policy reform eliminates convictions or incarceration. The IV 
estimand from an examiner-based research design will not reflect effects for many important types of individuals affected 
by these policies (e.g., those whom all examiners would always incarcerate).
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Pairwise monotonicity is sufficient to ensure that each person receives nonnegative weight. 
When pairwise monotonicity holds, all individuals who are not always or never takers can 
be divided into groups corresponding to each propensity value ​p​. We say an individual is a 
p-complier if they are treated when assigned to an examiner with ​p​( j)​  ≥  p​ and not other-
wise. Imbens and Angrist (1994) show that identifying a weighted average of treatment effects 
(with nonnegative weights) among complier groups is possible under the above conditions. 
Imbens and Rubin (1997) extend this result to show that when the exclusion restriction, exam-
iner random assignment, and pairwise monotonicity conditions all hold, marginal effects for 
every p-complier group are identified.

What does the pairwise monotonicity assumption imply for the basic conceptual framework 
introduced in Section 2.2? Pairwise monotonicity is implied when all examiners have the same 
beliefs or skills at eliciting information: ​​v​ij​​  = ​ v​i​​​. Notably, this common information condition 
implies that all examiners have a shared ranking of individuals in terms of their likelihood of 
committing misconduct. In a setting with many examiners, if any two examiners disagree on 
where a single individual should fall in the ranking, this individual (a defier) could generate a 
failure of monotonicity. Practically speaking, violations of monotonicity may occur when exam-
iners who are harsh on average may be lenient on particular groups of individuals or types of 
crimes due to different underlying beliefs.21

5.2	 Heterogeneous Treatment Effects and Heterogeneous Rankings

Examiners may not always have a shared ranking of individuals in terms of suitability for 
treatment (e.g., because of differences in bias, information or skill).22 This condition violates 
the pairwise monotonicity assumption, but 2SLS may still identify a proper weighted average 
of treatment effects when weaker conditions hold.

A first alternative condition is “average monotonicity.” This condition simply posits that the 
weights in equation (7) are nonnegative (Frandsen, Lefgren, and Leslie 2023). Formally, this 
idea is expressed as:

ASSUMPTION 5 (Average Monotonocity): For all ​i​, ​​∑ j=1​ k ​​ ​λ​j​​​(p​( j)​ − ​p – ​)​​(​D​i​​​( j)​ − ​​D 
–

 ​​i​​)​  ≥  0​.

Intuitively, the assumption is that the examiner-specific treatment status and examiner overall 
treatment propensity are positively correlated for each person. Equivalently, the average pro-
pensity among judges who would treat individual ​i​ must be no less than the average propensity 
among judges who would not. When there are only two examiners, average monotonicity is the 
same as pairwise monotonicity. With three or more examiners, violations of pairwise mono-
tonicity between a pair of examiners for a given individual can be offset if there is a positive 
covariance between treatment status and propensity across all examiners for that individual. 
This condition allows for the possibility that examiners may not entirely share an ordering in 
terms of suitability for treatment (i.e., ​​v​ij​​​ can vary across examiners), as long as these disagree-
ments are not extensive enough to make anyone’s treatment status negatively correlated with 

21 Consistent with this, a number of studies have documented that examiners differ in their severity behavior with 
respect to certain types of crimes or racial groups (Abrams, Bertrand, and Mullainathan 2012).

22 Imbens and Angrist (1994) pointed out that examiners may differ in their rankings if treatment decisions are based 
on several criteria.
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examiner propensity. Note that the “average” in average monotonicity refers to the average 
relationship between potential treatment status and the propensity across examiners for a 
given individual. It is important to highlight that it is not an average across individuals.

Several models of examiner decision-making violate pairwise monotonicity, but are consis-
tent with average monotonicity. One model is a variant of the single-index threshold-crossing 
model from Section 2.2 that features some examiners engaging in taste-based discrimination 
by shifting their cutoffs (i.e., being less lenient) for members of a minority group. In supple-
mental appendix A, we provide examples that illustrate how average monotonicity may or may 
not hold when there are violations of pairwise monotonicity.

While average monotonicity is plausible in more settings than pairwise monotonicity, there 
are limitations in terms of what parameters are identified when this condition holds. Under 
pairwise monotonicity, IV can identify marginal treatment effects that can be aggregated to 
answer a variety of policy questions (Mogstad, Santos, and Torgovitsky 2018). When average 
monotonicity holds alone, marginal treatment effects are no longer identified.

Chan, Gentzkow, and Yu (2022) provide a second approach to identification that departs 
from pairwise monotonicity, but relies on assumptions that are more restrictive than average 
monotonicity. Their approach specifies a framework that features both differences in prefer-
ences (or skills) across examiners and randomness in the signal that examiners receive about 
each individual. The latter implies there is uncertainty about the treatment status any examiner ​
j​ would assign to each person ​i​. In this framework, they define two conditions that together are 
stricter than the average monotonicity condition. Specifically, they define “probabilistic mono-
tonicity”: For each pair of examiners, one must have a weakly higher probability of treating 
all people than the other. In addition, they also define “skill-propensity independence,” which 
requires that skill is independent of treatment propensity across examiners and probabilistic 
monotonicity holds for examiners with equal skill. In their empirical application they find evi-
dence that violations of these conditions lead to misleading 2SLS estimates, an illustration of 
the potential for heterogeneous treatment effects to interfere with identification.

Finally, a third weakening of the conventional monotonicity assumption is the “compliers–
defiers” condition described in de Chaisemartin (2017). When this condition holds, within any 
pair of examiners there may exist some defiers (individuals whom the low-propensity examiner 
would treat, but not the high-propensity examiner), as long as there are at least as many com-
pliers (individuals who would be treated by the high-propensity examiner, but not the low-pro-
pensity examiner) with the same local average treatment effect as the defiers. In other words, 
defiers can be offset by compliers with the same treatment effect. Because the compliers–defiers 
condition rests on the existence of compliers with the same average treatment effect as the defi-
ers, it may hold for some outcomes and not for others. The set of compliers whose treatment 
effects are captured in the 2SLS estimate (“surviving compliers”) is not necessarily unique, mak-
ing it potentially impossible to characterize which individuals drive the estimated effect. The 
compliers–defiers condition is not equivalent to conventional monotonicity in the two-examiner 
case, nor does it nest average monotonicity. This is because the condition allows for the existence 
of some people whose treatment status is negatively correlated with examiner propensity.

We expect that conditions in most applications are more likely to satisfy the average mono-
tonicity assumption than the three alternatives to pairwise monotonicity described above.23 

23 Sigstad (2023) studies judicial panels in several settings and provides empirical evidence that suggests average mono-
tonicity is a more realistic condition even in settings where pairwise monotonicity is frequently violated. As we note in the 
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All three approaches allow for the presence of some defiance (i.e., low-propensity examiners 
treating people who are not treated by high-propensity examiners). In a setting where skill is 
well-defined, a framework similar to the one adopted by Chan, Gentzkow, and Yu (2022) may 
be useful. However, in many settings it is difficult, if not impossible, to label examiner deci-
sions as being correct or incorrect. The compliers–defiers condition, while weaker than the 
conventional pairwise monotonicity condition, is still a condition that restricts the pattern of 
behavior between every pair of judges. Motivating the existence of this granular pattern based 
on contextual or institutional details may be challenging in many cases.

5.3	 Marginal Treatment Effects

In the case of heterogeneous treatment effects, researchers are often interested in estimat-
ing marginal treatment effects (MTEs). In this section, we describe what MTEs mean in the 
examiner tendency setting and why they are useful. Identifying MTEs requires a monotonicity 
condition that holds for every pair of examiners (e.g., conventional pairwise monotonicity or 
the compliers–defiers condition). As we will show, MTEs are not identified when pairwise 
monotonicity fails.

Under pairwise monotonicity, examiners agree on the ordering of individuals in terms of 
suitability for treatment. MTEs describe how treatment effects vary along the suitability spec-
trum. Under pairwise monotonicity, we can without loss of generality assign each individual an 
index value ​​U​i​​​, distributed uniformly over ​​(0, 1)​​ corresponding to their location on the suit-
ability spectrum. A p-complier, defined above as someone who would be treated by any judge 
with ​p​( j)​  ≥  p​ and not otherwise, would have ​​U​i​​  =  p​. The marginal treatment effect at ​p​, 
defined in Heckman, Tobias, and Vytlacil (2001), Heckman, Urzua, and Vytlacil (2006), and 
Heckman and Vytlacil (2007) is defined as the average treatment effect among p-compliers:

	​​ δ​​ MTE​​(p)​  =  피​[​Y​i​​​(1)​ − ​Y​i​​​(0)​ | ​U​i​​  =  p]​.​

MTEs are often of interest in their own right. In the pretrial detention example, the MTEs 
give the effects of pretrial detention for defendants who would always be detained (​​δ​​ MTE​​(0)​​), 
for defendants who would never be detained (​​δ​​ MTE​​(1)​​), and all defendants in between.

MTEs are also of interest because other policy-relevant parameters can be estimated as a 
function of MTEs. For example, integrating MTEs over the propensity range from zero to one 
delivers the overall average treatment effect (ATE), a parameter often coveted by researchers. 
Researchers following this route to the ATE should be mindful that it relies on pairwise mono-
tonicity and exclusion while also requiring that judge propensities span the range from zero to 
one. If the range of observed propensities is narrower, the estimate for the ATE will implicitly 
extrapolate beyond the support of observed propensities.24

conclusion, further research assessing the plausibility of monotonicity conditions and the magnitude of bias due to violations 
remains an ongoing topic for future research.

24 When the compliers–defiers condition in de Chaisemartin (2017) holds, marginal treatment effects for surviving com-
pliers can be recovered, but these cannot be integrated over to estimate an average treatment effect. Because the difference 
in average outcomes between any two examiners reflects only treatment effects for surviving compliers, the MTEs for sur-
viving compliers are identified. However, the defiers and the compliers that functionally cancel out the negatively weighted 
defiers in the estimand will never be represented in the MTE estimation, making it impossible to estimate a population 
average treatment effect.
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Heckman and Vytlacil (2005) show that, under pairwise monotonicity and strict exclusion, 
these marginal treatment effects are identified provided there is sufficient variation in exam-
iner propensities. That is, the MTE is the limit of the LATE parameter as the difference in 
probability of treatment between two examiners goes to zero. In other words, this parameter is 
the slope of the reduced-form relationship between outcomes and judge propensities. To see 
this, consider a case in which there are just two examiners, one with a lower propensity, ​p​, and 
one with propensity ​​p ′ ​  >  p​. Let ​​Z​i​​​ be a binary indicator taking a value of 1 when an individual 
is assigned to the examiner with a higher propensity and zero otherwise. In this case, the local 
average treatment effect is identified by the Wald ratio between the two examiners:

	​​ δ​​ LATE​​(​p ′ ​, p)​  = ​  
피​[​Y​i​​ | ​Z​i​​  =  1]​ − 피​[​Y​i​​ | ​Z​i​​  =  0]​

   __________________________________    
ℙ​(​D​i​​  =  1 | ​Z​i​​  =  1)​ − ℙ​(​D​i​​  =  1 | ​Z​i​​  =  0)​

 ​ 

	 = ​  
피​[​Y​i​​ | p​(​J​i​​)​  = ​ p ′ ​]​ − 피​[​Y​i​​ | p​(​J​i​​)​  =  p]​

    ________________________________  ​p ′ ​ − p   ​.​

With this expression for the LATE in mind, the MTE is intuitively identified by comparing 
outcomes for individuals assigned to examiners whose propensities to administer treatment 
are close together. More formally, the marginal treatment effect is identified by:

	​​ δ​​ MTE​​(p)​  = ​  lim​ 
​p ′ ​→p

​​ ​δ​​ LATE​​(​p ′ ​, p)​  = ​  
∂ 피​(Y | p​(​J​i​​)​  =  p)​

  _______________ ∂ p
  ​.​

For visual intuition, consider the top-left panel of Figure 2. Each point on this figure cor-
responds to a hypothetical examiner who assigns a binary treatment that affects a binary out-
come. The horizontal axis measures ​p​( j)​​ and the vertical axis measures the average outcomes 
for individuals assigned to each examiner. As discussed in Frandsen, Lefgren, and  Leslie 
(2023), when pairwise monotonicity and strict exclusion hold, the slope of the function con-
necting these points is the MTE at each point. The function plotted in the bottom-left panel 
illustrates the MTEs at each point ​p​( j)​​. Since the outcome is binary, each individual’s treat-
ment effect and the associated MTEs must fall between −1 and 1.25

When pairwise monotonicity does not hold, the LATE estimand between a pair of neigh-
boring examiners in terms of propensity no longer identifies a marginal treatment effect.26 
For intuition, consider the top-right panel of Figure 2, which also plots propensity and aver-
age outcome values for a set of hypothetical examiners. In contrast to the top-left panel, the 
set of points is inconsistent with pairwise monotonicity for two reasons. First, in the area of 
the graph marked with an “A,” there are two examiners with identical propensities but differ-
ent average outcomes. If we take these to be population points (rather than estimates from a 

25 Continuous outcomes will only have bounds on the range of possible treatment effects if the outcome itself is bounded. 
For example, potential earnings may be unbounded, in which case there would be no mathematical limit to the change 
in earnings that a person could experience as a result of treatment. On the other hand, effects on a bounded continuous 
outcome will be bounded by the size of the range of the outcome. For example, if defendants charged with a certain class 
of crimes can only receive up to 365 days in jail, then treatment effects on jail sentence must lie between −365 and 365.

26 Similarly, violations of strict exclusion preclude identification of MTEs.
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sample) and assume that random assignment to examiners and strict exclusion hold, the pattern 
at A implies these two examiners differ in the set of individuals that they assign to treatment, a 
violation of monotonicity. Similarly, the area of the graph marked with a “B” shows examiners 
for whom the estimated LATE would take on impossible values, that is, outside the interval 
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Figure 2. Marginal Treatment Effects Illustration

Notes: This figure illustrates hypothetical population-level data from examiner contexts with a binary treat-
ment and binary outcome that would be consistent (left panels) and inconsistent (right panels) with the pair-
wise monotonicity condition holding. The first row illustrates the relationship between the average outcomes 
of individuals (e.g., defendants), ​E​(Y)​​, and examiner propensities to administer treatment, ​​p​j​​​. The second row 
reports the derivative of expected outcomes given examiner propensities, ​∂ E​(Y)​/∂ ​p​j​​​. Note that the area of the 
graph marked with an “A” in the upper-right subfigure shows two examiners that have the same propensity ​​p​j​​​ 
but differ in the average outcomes. These population points are inconsistent with pairwise monotonicity. If 
random assignment and strict exclusion hold, two examiners with the same propensity to treat can only have 
different average individual outcomes if they differ in the set of individuals whom they assign to treatment (a 
violation of pairwise monotonicity). The area marked “B” in the upper-left graph is inconsistent with pairwise 
monotonicity because the slope of ​E​(Y)​​ takes on values outside the interval of possible treatment effects for 
a binary outcome (−1 to 1).
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from negative one to one (as shown in the bottom right panel).27 Again, under random assign-
ment and strict exclusion, this pattern is only possible if examiners disagree on the ordering of 
people in terms of suitability for treatment and thereby treat non-nested sets of individuals.

As noted, the researcher can still estimate a proper weighted average of treatment effects 
across all examiners as long as average monotonicity holds. However, without pairwise mono-
tonicity, the Wald estimator between any particular pair of examiners can no longer be inter-
preted as a causal treatment effect.

5.4	 Multi-valued Treatments

The canonical examiner tendency design reveals the effects of a single binary treatment. 
However, treatment often takes on more than two values, or examiners affect outcomes 
through multiple channels. For example, an arraignment judge may decide whether to assign 
individuals to one of three pretrial statuses: detention, supervised release, or unsupervised 
release (three distinct treatment categories).28 In some contexts, the researcher may have 
interest in a particular channel—the focal treatment—while all other treatments are consid-
ered secondary. In others, several treatment channels may be observed and be of interest to 
the researcher. In this section, we review what examiner tendency designs identify when treat-
ment takes on more than two values or examiners affect outcomes through several channels, 
drawing from recent work on IV in the presence of multiple treatments.

5.4.1	 Variable Treatment Intensity

In some instances, treatment takes on several ordered values, corresponding to variable 
treatment intensity or “dosage.” For example, a judge may choose the amount of bail a defen-
dant must post. Under exclusion and monotonicity conditions similar to the basic framework 
above, IV identifies a weighted average of individual-level responses to a one-unit increase 
in treatment, or the average causal response (Angrist and Imbens 1995). The monotonicity 
condition adapted to this setting means that, for any pair of examiners, one examiner always 
assigns individuals to at least as high a treatment level as the other. The average causal response 
identified by IV puts positive weight on individuals whose treatment level would vary across 
examiners—a generalization of compliers.

Estimation and inference proceed much like that for the effects of a binary treatment. 
Jackknife IV with examiner dummies as excluded instruments produces consistent and asymp-
totically normal estimates for the average causal response. The “propensities” estimated in the 
first stage would no longer be judge-level probabilities of treatment, but judge-level expected 
values of treatment.

27 Note that the issue is not that the slope of ​E​(Y | p)​​ takes on both positive and negative slopes; pairwise monotonicity 
does not imply that ​E​(Y | p)​​ must be a monotonic function. Rather, it implies that the slope of the expected value function 
stay within the interval of possible treatment effect values based on the range of the outcome variable.

28 Examiners may also assign individuals to overlapping treatment categories. In the arraignment context, the judge may 
decide whether to assign individuals in criminal cases to pretrial detention as well as determining whether they are eligible 
to be represented by a public defender. If treatments are overlapping, we can always define exclusive treatment categories 
(e.g., detained without a public defender, detained with a public defender, released without a public defender, and released 
with a public defender).
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5.4.2	 Multiple Channels

In the cleanest applications, examiners influence outcomes through a single channel. 
However, in some settings, examiners make multiple decisions that could impact individual 
outcomes (e.g., a judge setting bail and deciding whether to appoint a public defender, as 
discussed above). This section highlights how the presence of multiple channels threatens the 
validity of examiner designs and may render credible causal inference impossible. We also dis-
cuss conditions under which additional channels do not bias IV estimates for a focal treatment 
of interest, as well as the conditions under which additional channels can be accounted for in 
the estimation. The required conditions that we highlight are stringent, however, and may not 
hold in many settings.

When multiple treatment categories exist, researchers can take one of two approaches. One 
strategy is to define treatment using a single binary category. Returning to our pretrial exam-
ple, a researcher could solely define their treatment as an indicator for being detained pretrial 
and ignore public defender assignment. This approach effectively collapses the data into two 
groups even though there are four distinct categories of defendants based on whether or not 
individuals are detained pretrial or receive a public defender. We stress that researchers should 
keep in mind that this decision may have consequences. Most importantly, multiple channels 
can cause violations in the exclusion restriction that bias IV estimates if the judge decisions 
across multiple channels are systematically correlated. Concretely, if judges who are more 
likely to release defendants pretrial are also more likely to appoint a public defender, then 
differences in average outcomes across judges with high and low propensities to release defen-
dants are potentially contaminated by the additional effects of appointing a public defender.

When can researchers safely estimate the effects of a single binary treatment despite the 
presence of other channels or treatment categories? If examiners’ influence on outcomes 
through any additional channels is uncorrelated with their propensity to assign the focal treat-
ment—a condition dubbed average exclusion in Frandsen, Lefgren, and Leslie (2023)—then 
IV estimates still identify the effect of interest.29 Average exclusion is a strong condition and 
needs justification on a case by case basis. If the additional channels—for example, appoint-
ment of a public defender—are observed, then researchers can provide empirical support 
for average exclusion by checking if examiners’ propensities for the additional channels are 
uncorrelated with their propensity for the focal treatment.

Another approach to causal inference in settings with multiple examiner decisions is to 
explicitly define each channel as a distinct treatment. This may be necessary in the absence of 
a compelling argument for average exclusion or when the effects of all channels are directly of 
interest. Doing so requires that additional identifying conditions hold. The classical approach 
posits that the outcome depends on treatments linearly with constant effects. Linear 2SLS 
using examiner indicators as instruments for multiple endogenous variables can identify those 
effects relative to the omitted treatment category. This is possible as long as examiners are 
randomly assigned and there is sufficient variation in examiners’ propensities to assign the 
various treatments.30

29 Kolesár et al. (2015) discussed a similar condition and showed identification in a constant effects framework.
30 Equivalently, one can add examiner propensities for non-focal treatments as controls; the IV coefficient on the treat-

ment of interest will be the same as if one simultaneously instrumented for all treatments using examiner indicators.
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As discussed in Section 5, the constant effects condition can be relaxed in the case of a single 
binary treatment, as long as a monotonicity condition holds and IV identifies a local weighted 
average treatment effect among compliers (Imbens and Angrist 1994). Is the same true for 
multiple treatments? That is, can linear IV with multiple endogenous variables identify proper 
weighted averages of heterogeneous treatment effects?31 Ongoing work shows that the answer 
is yes, but the additional conditions required may be difficult to justify in most examiner design 
settings. In particular, Bhuller and Sigstad (2024) give the conditions under which linear 2SLS 
with several endogenous treatments recovers proper weighted averages of treatment effects, 
and Humphries et al. (2024) discuss contexts when a conventional 2SLS approach that con-
trols for non-focal propensities can identify causal effects of the treatment of interest.

Identification in settings with multiple treatments places stringent conditions on examiner 
decision-making. Supplemental appendix B describes the conditions required in the Bhuller 
and Sigstad (2024) and Humphries et al. (2024) frameworks. In general, the two frameworks 
are distinct, but we illustrate the stringency of the conditions in the case where they are equiv-
alent: when there are three mutually exclusive unordered treatments, indexed by ​​{0, 1, 2}​​ , and 
three examiners, also indexed by ​​{0, 1, 2}​​. For example, judges in some settings may choose 
between assigning criminal defendants to probation, paying a fine, or rendering community 
service. One can define treatment effects for each “margin” of interest based on comparing 
potential outcomes under each treatment ​d​ relative to a reference treatment, which we denote 
by 0. Formally, we represent this quantity as ​​δ​ i​ 0→d​  ≔ ​ Y​i​​​(d)​ − ​Y​i​​​(0)​​, where ​​Y​i​​​(d)​​ is individual ​i​’s 
potential outcome under treatment ​d​. The conditions proposed in Bhuller and Sigstad (2024) 
and Humphries et al. (2024) both restrict how each examiner’s treatment assignment decisions 
may differ from a reference examiner, whom we also index by ​0​ .32 The reference examiner 
may assign individuals to any of the three treatment categories. Examiner 1, however, may dif-
fer from the reference examiner only in that some of the individuals assigned to treatment 0 by 
the reference examiner may be assigned to treatment 1 by examiner 1. Similarly, examiner 2 
may differ from the reference examiner only in that some of the individuals assigned to treat-
ment 0 by the reference examiner may be assigned to treatment 2 by examiner 2.

Intuitively, when the above restrictions on examiner treatment assignment hold, any dif-
ference between the average outcomes of individuals assigned to examiners ​1​ and ​0​ reflects 
only the fact that some individuals receive treatment ​1​ rather than treatment ​0​; similarly, any 
difference in outcomes between individuals assigned to examiners 2 and 0 is due to the fact 
some individuals receive treatment 2 rather than treatment 0. In this way, the researcher can 
identify proper weighted averages of ​​δ​ i​ 0→d​​ using 2SLS by defining indicators ​​D​di​​​ for each 
treatment category ​d​ that are equal to one if treatment assignment is equal to ​d​ (and zero 
otherwise) and instrumenting for these indicators using the examiner dummies (omitting a 
reference examiner).

Finally, while the results from Bhuller and Sigstad (2024) and Humphries et al. (2024) are 
helpful for understanding multiple treatments and examiner tendency designs, it is worth not-
ing two limitations highlighted by their discussions. First, as our example above demonstrates, 

31 IV methods beyond linear 2SLS can identify treatment effects in the discrete choice models discussed by Heckman, 
Urzua, and Vytlacil (2006), Heckman and Pinto (2018), and Lee and Salanié (2018). We focus on what 2SLS can identify 
in the examiners design.

32 Humphries et al. (2024) does not explicitly define a reference examiner in its framework. However, in the just-iden-
tified case, the conditions there imply the existence of a reference examiner. We demonstrate this point formally in 
Supplemental Appendix B.
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the requirements can be limiting in terms of examiner decision-making patterns. For example, 
threshold-crossing models with a single unobservable to determine treatment can be sufficient 
for identification (see Bhuller and Sigstad 2024 for a more detailed discussion); however, these 
models are restrictive since they assume judges share a common ranking of individuals in terms 
of their suitability to receive the treatments being considered. Second, the condition that one 
treatment category serves as the reference treatment should not be viewed as an arbitrary 
choice. For example, consider the sentencing judge choosing among probation, fines, or com-
munity service. In our simplified just-identified setting, the researcher must identify one of 
these three punishments as a reference treatment—meaning that, for every defendant about 
whom judges disagree over the appropriate punishment, the disagreement can only be between 
two treatments, with one of the two preferred options always being the reference treatment.

6.  Specification Testing

Estimates from examiner tendency designs only have a causal interpretation when several 
identifying conditions hold. As detailed above, these include the (conditional) random assign-
ment of individuals to judges or examiners, meaningful variation in the propensity of examiners 
to assign individuals to treatment, and exclusion restrictions whereby examiners only influence 
outcomes through treatment assignment. When there are heterogeneous treatment effects, the 
design also relies on monotonicity conditions that place restrictions on how individual treat-
ment assignment varies across examiners. When any of these conditions are violated, IV may 
fail to identify causal effects and estimates may be misleading. For example, if examiners are 
not randomly assigned, then IV estimates may reflect selection differences across examiners that 
are correlated with treatment propensity. If the monotonicity conditions are violated, IV may 
identify an improper weighted average of treatment effects where some weights are negative. 
In some cases, this may imply that the IV estimand is the opposite sign of the true causal effects.

The primary identification arguments for examiner tendency designs should be based on 
institutional and economic reasoning. At the same time, recent advances in the literature pro-
vide a range of empirical tests that can shed light on violations of the identifying conditions in 
a given setting. In this section, we describe four approaches to testing identifying conditions 
in examiner tendency designs.

•	Assessing random assignment: Researchers can use conventional balance tests from 
the RCT literature to assess the plausibility of random assignment of examiners. One 
approach is to regress the examiners’ treatment propensities on a vector of observed 
characteristics and test for their joint significance. Another is to run a series of regres-
sions with observed characteristics on the left-hand side and examiner indicators on the 
right-hand side and test for the joint significance of the examiner indicators. These two 
approaches differ in the violations of random assignment they have statistical power 
to detect. For example, a regression of an observed individual characteristic on the 
examiner propensity (instead of examiner indicators) will have greater statistical power 
to detect violations of random assignment that are correlated with the examiner pro-
pensities. However, one may want a test that also has power to detect violations that are 
uncorrelated with examiner propensities if the analysis will be leaning on the stronger 
strict exclusion and pairwise monotonicity conditions. In this case, one should regress 
pretreatment characteristics on the set of examiner dummies.
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•	First-stage diagnostics: When examiners vary little in their treatment propensities, 
IV estimates from an examiner-tendency design can be biased and confidence inter-
vals misleading. Researchers traditionally gauge the strength of the instruments by the 
partial F-statistic from a regression of treatment on the instruments, often following 
the ​F  >  10​ rule of thumb (Staiger and Stock 1997). As detailed in Section 4, there are 
pitfalls to this approach in applications of examiner tendency designs. First, when there 
are many examiners and the instruments are taken to be examiner indicators in a 2SLS 
procedure, the F-statistic can be a misleading guide to instrument strength (Hansen, 
Hausman, and Newey 2008). Second, conditioning on the first-stage F-statistic—that is, 
some researchers may be tempted to discard results that do not pass the ​F  >  10​ test—
distorts inference on the second-stage treatment effects, as we showed in Section 4. We 
therefore do not recommend that researchers condition on the first-stage F-statistic. 
Instead, we recommend using a jackknife IV estimator (e.g., IJIVE or CJIVE) and 
applying the recently proposed approach by Angrist and Kolesár (2024) that suggests 
conditioning on the sign of the estimated first-stage relationship between treatment 
and the jackknifed instrument. They show that conditioning on a right-signed estimated 
first stage reduces weak-instrument bias without distorting inference—a pattern that 
our simulation evidence bears out.

•	Testing exclusion and monotonicity conditions: Thus far, the literature recommends 
two types of tests. First, researchers can jointly test whether the conventional strict exclu-
sion and pairwise monotonicity conditions hold using the test described in Frandsen, 
Lefgren, and Leslie (2023). As discussed in Section 5.3, this test relies on the fact that 
these conventional assumptions imply that individual outcomes averaged at the examiner 
level should be a continuous function with bounded slope of the examiner-level treatment 
probability (“propensity”). Intuitively, the test asks whether the sample examiner-level 
mean outcomes and propensities are consistent with population examiner-level average 
outcomes and propensities that satisfy the bounded slope condition for each pair of exam-
iners. Second, the weaker average monotonicity condition can also be tested using a pro-
cedure suggested in Frandsen, Lefgren, and Leslie (2023), which amounts to checking 
whether first stages within observable subgroups are positive.

•	Estimating effects of multiple channels: Researchers must be careful to account 
for the presence of multiple treatments in some settings. In a setting that features 
constant treatment effects, Section 5.4 notes that it is possible to instrument for mul-
tiple treatments simultaneously using examiner indicators and recover an estimate of 
the effect of each treatment relative to the omitted treatment category. If researchers 
believe constant treatment effects may be plausible in their setting, Sargan’s (1958) test 
of overidentifying restrictions can be helpful. The Sargan overidentification test can be 
implemented using preexisting statistical software packages that estimate an IV model 
where all observed treatments are endogenous variables and the set of examiner indica-
tors are instruments. The testing procedure is based on a regression of the second-stage 
residuals on examiner indicators, and assessing the joint significance of the examiner 
indicators. Rejections of the null hypothesis are consistent with violations of constant 
treatment effects for the endogenous treatments. In the case of three treatment cate-
gories, this test is equivalent to examining whether the sample examiner-level average 
outcomes and propensities are consistent with the population examiner-level average 



Journal of Economic Literature, Vol. LXIII (June 2025)428

outcomes and propensities lying on a plane—an implication that holds with constant 
treatment effects. Testing the conditions required for identifying the effects of multiple 
channels when those effects may be heterogeneous is still an active area of research 
(e.g. Bhuller and Sigstad 2024; Humphries et al. 2024) and established best practices 
have not yet emerged.

7.  Case Study: Effects of Pretrial Detention

In this section, we provide a concrete guide to implementing our suggested best practices 
using an empirical example that analyzes the effects of pretrial detention on conviction. This 
exercise uses an examiner tendency design in which the decision-makers of interest are bail 
judges. The code and data for the example are available online. As in Dobbie, Goldin, and Yang 
(2018), we use a sample of court records from misdemeanor and felony cases in Miami–Dade 
County, Florida, over the period 2006–2014 (Chyn, Frandsen, and Leslie 2025). Following 
arrest, defendants in Miami–Dade were brought to a police station where they could secure 
pretrial release by posting bail that varied based on the seriousness of their offense. The 
70 percent of defendants who did not immediately post bail appeared at bail hearings. The 
bail judge at the hearing could change the bail amount or impose additional conditions.

As described in Dobbie, Goldin, and Yang (2018), multiple bail judges preside over cases 
that appear throughout the week in Miami–Dade. Judge assignment typically occurs within 
24  hours of arrest, and varies based on the crime category (misdemeanor or felony) and 
whether hearings are scheduled during weekdays or weekends. While weekday cases are han-
dled by a single judge, weekend cases are handled by a rotating cadre of judges. As a result, 
defendants scheduled during the same court “shift” (i.e., all cases in a crime category on a 
given calendar date) would appear before the same bail judge. There is little scope for manip-
ulating judge assignment given the short window between arrest and hearings. Bail hearings 
are unrelated to the process of trial judge assignment, so there is no mechanical relationship 
between the pretrial hearing process and later stages of a case.

We use data from court records, which include information on arrest charges, the identities 
of bail judges, bail amount and type, if and when bail was posted, as well as defendant char-
acteristics such as name, gender, race, date of birth, and address. The identifying information 
for defendants allows us to link records and observe whether an individual has a prior criminal 
case during the sample period (“prior offenders”). The data also indicate whether the defen-
dant is ultimately convicted for their case, our main outcome of interest.

For our analysis, we follow Dobbie, Goldin, and  Yang (2018) and restrict our attention 
to cases assigned to a weekend bail hearing because these are cases where bail judges are 
assigned on a rotating schedule. In the main analysis, we restrict the sample to cases that have 
a bail judge who presided over at least 200 bail hearings during our sample period. Examiners 
with a small number of observations have noisily estimated propensities. Removing examiners 
who make decisions for only a small number of cases can therefore increase the precision of 
the estimates, since this removes observations for which the first stage is relatively weak.33 
These restrictions leave 91,282 cases, presided over by 146 unique judges.

33 There is no objective criteria for choosing the minimum number of cases per examiner, so we recommend choosing 
a minimum caseload that is not excessively restrictive in the study setting and demonstrating that changing the minimum 
caseload does not alter the results substantially as a robustness check.
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Table 1 reports summary statistics for our analysis sample. The first column shows that the 
sample is mostly male and split roughly evenly between Black and non-Black defendants. 
Columns 2 and 3 show that defendants who are released prior to trial are more likely to be White 
and less likely to have a prior offense (in the past year) relative to those who are detained.34 
After their bail decisions have been made and their case is heard, the released defendants 
are also less likely to be convicted. These differences are consistent with the hypothesis that 
pretrial release affects case outcomes, although the differences in demographics and previous 
criminal histories motivate the need to go beyond simple comparisons between released and 
detained defendants.

34 Defendants released before trial are also more likely to have a felony or violent offense. This finding that release is 
associated with more severe offenses is potentially due to the fact that the likelihood of failing to appear at one’s trial court 
date is a key judicial criterion for pretrial release. Given this objective, released defendants may not necessarily be a group 
of defendants who are associated with more severe charges.

TABLE 1 
Pretrial Detention Case Study: Defendant-Level Summary Statistics

Unweighted Estimate

Full sample Released Detained Complier weighted
(1) (2) (3) (4)

Male 0.84 0.79 0.87 0.69
Black 0.52 0.50 0.54 0.56
Age at bail decision 35.67 33.98 36.49 35.56
Prior offender 0.56 0.43 0.63 0.55
Number of offenses 1.63 1.59 1.66 1.01
Felony offense 0.52 0.56 0.51 0.28
Any drug offense 0.29 0.30 0.28 0.23
Any violent offense 0.21 0.32 0.16 0.05
Any property offense 0.36 0.25 0.42 0.24
Any guilty offense 0.59 0.41 0.67 0.96

Observations 91,282 29,870 61,412 91,282

Notes: This table provides summary statistics for defendants included in our analy-
sis sample. The first column reports overall means for the listed variables described 
in each row. The second column reports means for the subsample of defendants 
released pretrial, and the third column shows means for the subsample of defendants 
detained pretrial. The fourth column reports estimates of complier-weighted means. 
We follow the approach from Abadie (2003) and detailed in Section  7 to estimate 
complier-weighted averages using our CJIVE measure of judge leniency and our pre-
ferred IV specification. The last row in column 4 presents complier-weighted averages 
for any guilty offense (i.e., conviction), which is a posttreatment outcome variable. For 
this measure, we report the estimated mean in the untreated state (i.e., the share of 
compliers who are convicted when they are not released pretrial). 
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We are interested in studying the causal effects of pretrial release, represented in the fol-
lowing model:

(8)	​​ Y​i​​  =  δ Release​d​i​​ + ​X​ i​ ′​ β + ​ε​i​​ ,​

where ​​Y​i​​​ is a post bail hearing outcome for individual ​i​, ​Release​d​i​​​ is an indicator for whether the 
individual was “treated” by being released within three days of the bail hearing, and ​​X​i​​​ is a vec-
tor of court-by-year-by-day-of-week and court-by-month-by-day-of-week fixed effects, which 
we refer to as “court-by-time fixed effects.” The court indicator distinguishes between felony 
and misdemeanor cases. In words, based on our definition of ​​X​i​​​, our identifying assumption is 
that judges are randomly assigned within court, year, month, and day-of-week groups. Other 
case characteristics are omitted from ​​X​i​​​ in order to use them for balance tests, as discussed in 
Section 3.3.

A key concern is that OLS estimates from equation (8) may be biased if there are unob-
served factors that are correlated with both pretrial release and posttreatment outcomes, such 
as whether the defendant was convicted or commits a new crime in the future. For example, 
one possibility is that bail judges may be more likely to release more advantaged defendants 
who may have the lowest likelihood of committing a new crime in the future. In this case, OLS 
estimates will be biased toward a finding that pretrial release lowers future criminal activity.

To credibly estimate the causal effects of pretrial release, we employ an IV strategy based 
on bail hearing judge assignment. As noted above, our setting implies that defendants are con-
ditionally randomly assigned to judges. Specifically, we assume that within covariate (in our 
case, court-by-time) cells, shifts were randomly allocated among the set of judges who had the 
potential to be assigned to that cell. Our court-by-time fixed effects allow for the possibility 
that some judges may not be available for shifts in all years, may not be present on particular 
weekend days, or may work primarily in one court. Because defendants are assigned to judges 
in shifts, not individually, we cluster at the shift level and use the CJIVE estimator, which 
constructs a judge leniency measure excluding all defendants in the same cluster and handles 
covariates appropriately as described in Section 3.

To construct the CJIVE instrument, we first compute two sets of residuals from regressing 
the treatment variable (​Release​d​i​​​) and judge indicator variables on the vector of covariates ​​
X​i​​​. We then regress the residualized treatment variable on the residualized judge indicators, 
leaving out one cluster (shift) at a time.35 We form our estimated leniency meausure, ​​​p ˆ ​​i​​​, from 
the predicted values of residualized treatment for defendants in the omitted cluster in each 
regression.

The histogram in Figure 3 shows that there is meaningful variation in this leniency measure. 
In addition, the shape of the figure demonstrates that there is a substantive first-stage relation-
ship between the instrument (​​​p ˆ ​​i​​​) and the likelihood of pretrial release (​Release​d​i​​​). A simple 
linear regression shows that defendants are 3 percentage points more likely to be released 

35 It is straightforward to use a standard statistical program such as Stata to construct the CJIVE estimator. When assign-
ment to judges is not clustered, researchers can run UJIVE or IJIVE using the “manyiv” package available at https://
github.com/gphk-metrics/stata-manyiv. Note that none of the variables should be residualized prior to running any of these 
programs.

https://github.com/gphk-metrics/stata-manyiv
https://github.com/gphk-metrics/stata-manyiv
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pretrial if they were assigned to a judge whose estimated release rate was 10 percentage points 
higher.36

As detailed in Section 5.2, IV estimates of the parameter ​δ​ can be interpreted as a weighted 
average of the causal effects of pretrial release when there is treatment effect heterogeneity 
and the conditions of instrument exogeneity, exclusion, and monotonicity hold. This parame-
ter represents causal impacts among the subset of complier defendants who would be released 
by lenient judges but not by strict judges. We next undertake a series of exercises to examine 
whether the usual identifying conditions necessary for judge research designs are plausible.

Balance tests support the idea that defendants in this setting are conditionally randomly 
assigned to judges working a given shift. As a benchmark, Table 2, column 1 reports results 
from a linear probability model with pretrial release, the endogenous “treatment” variable of 
interest specified as the dependent variable, and the independent variables include defendant 
and case characteristics as well as court-by-time fixed effects. These statistically significant 
estimates demonstrate that defendants who do and do not receive pretrial release still have 
observable differences in baseline characteristics even after controlling for court-by-time fixed 

36 The first-stage slope on a 2SLS (i.e., non-jackknifed) fitted value would be one mechanically; the smaller slope here 
on the jackknifed fitted value reflects sampling uncertainty given the finite number of shifts assigned to each judge and the 
fact that ​​​p ˆ ​​i​​​ is an out-of-sample prediction.
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Figure 3. Distribution of Judge Leniency Measure

Notes: This histogram shows the distribution of the CJIVE measure of judge leniency detailed in Section 7. 
The black line shows a local linear regression of the instrument on the residualized treatment measure. The 
residuals are based on a model that removes court-by-time fixed effects. For comparison, the figure also 
reports the estimated coefficient on the CJIVE measure from a linear first-stage regression and the associated 
standard error clustered at the shift level.
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effects. In column 2, the dependent variable is the cluster jackknifed measure of judge leni-
ency; in contrast to column 1, these results show that the vector of defendant and case charac-
teristics (which, crucially, were not included in the covariates used during the construction of 
the CJIVE instrument) have no significant joint predictive power for the leniency instrument’s 
value.

Next, we assess the exclusion restriction and pairwise monotonicity conditions. The exclu-
sion restriction in our setting may be violated if bail judges influence case outcomes through 
secondary channels like appointment of a public defender. Pairwise monotonicity may be vio-
lated if bail judges who are stricter overall would nevertheless release some defendants whom 

TABLE 2 
Assessing Balance

Treatment Leniency measure
(1) (2)

Male −10.097 −0.019
(0.404) (0.033)

Black −2.251 −0.027
(0.296) (0.025)

Age −0.310 −0.002
(0.012) (0.001)

Prior offender −17.371 −0.005
(0.308) (0.024)

Number of counts −2.137 0.015
(0.131) (0.011)

Felony charge 24.596 −0.586
(9.817) (0.643)

Drug charge 2.201 0.055
(0.426) (0.038)

Violent charge 14.565 0.012
(0.420) (0.033)

Property charge −11.428 0.052
(0.374) (0.029)

Joint F-stat 1,160.491 1.349
p-value 0.000 0.207
Observations 91,282 91,282
Mean of dep. var. 0.327 0.000

Notes: This table reports results from a balance test analysis using the 
sample constructed to study the effects of pretrial release. Column 1 
reports results from a linear probability model with pretrial release as 
the dependent variable. The independent variables include defendant 
and case characteristics as well as court-by-time fixed effects. Col-
umn 2 reports results using our preferred judge leniency instrument 
(CJIVE) as the dependent variable in the linear probability model. 
Note that the independent variables have been rescaled (divided by 
100) for readability of the coefficients and standard errors.
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more lenient judges would detain, perhaps because more lenient judges may be stricter for 
particular groups of defendants. The joint test proposed by Frandsen, Lefgren, and Leslie 
(2023) can detect these types of violations. As noted in Section 6, the test examines slope 
restrictions on the relationship between the judge-level expected values of the outcome and 
treatment. When we implement the test using the Stata package “testjfe” and specifying con-
viction as the post–bail hearing outcome of interest, we reject the null that strict exclusion and 
pairwise monotonicity both hold at the one percent level.

Figure 4, generated using the “graph” option on the “testjfe” command, provides intuition 
for the results of the test of slope restrictions in our sample. Each point corresponds to a 
judge and shows the share of defendants that they see in bail hearings who go on to be con-
victed (y-axis) along with their estimated propensity to release defendants pretrial (x-axis). 
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Figure 4. Illustration of Test of Pairwise Monotonicity and Strict Exclusion

Notes: This figure provides an illustration of the joint test of strict exclusion and pairwise monotonicity rec-
ommended in the Frandsen, Lefgren, and Leslie (2023). The y-axis reports conviction rates while the x-axis 
reports judge-level treatment propensities. The dots (in gray) correspond to the observed conviction and 
treatment propensity in our sample after controlling for court-by-time fixed effects. The test proposed in 
Frandsen, Lefgren, and Leslie (2023) is based on fitting a flexible spline function to the observed data on 
conviction rates and treatment propensities. The solid line (in red) shows the predicted values of the spline 
function fit to the observed data. Intuitively, the test examines two conditions: (i) whether the fitted function 
meets slope restrictions implied by the range of possible treatment effect sizes; (ii) if the judge fixed effects 
have significant explanatory power after accounting for each judge’s predicted point on the fitted function (i.e., 
whether the distance from the observed points to the fitted function are consistent with sampling variation). 
In this sample, the test rejects the null hypothesis at the 1 percent significance level. Triangles (in green) 
are simulated mean conviction rates that would be “close enough” to the fitted line to fail to reject the null 
hypothesis. In a given setting, the definition of close is a function of both distance and the number of cases per 
judge. For this reason, visual assessment is not a substitute for the formal statistical test proposed in proposed 
by Frandsen, Lefgren, and Leslie (2023).
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After fitting a flexible function to these points, the test checks two conditions implied by strict 
exclusion and pairwise monotonicity: (i) whether the slope of the fitted function is impossibly 
large because it exceeds the range of possible treatment effects sizes, and (ii) whether the 
judge assignment has significant explanatory power for the outcome after accounting for each 
judge’s predicted point on the fitted function. Intuitively, we can think of the fitted function 
as mapping out a set of candidate population points—combinations of true propensity to treat 
and true average outcomes across judges—and the testing procedure as assessing whether the 
candidate population points imply impossibly large treatment effects and if the distance from 
the empirical points to the fitted function is consistent with sampling variation.

In our example, the test rejects the null hypothesis that strict exclusion and pairwise mono-
tonicity conditions both hold because judge assignment has significant explanatory power 
for outcomes even after accounting for the judge’s treatment propensity. For comparison, 
Figure 4 also shows a set of simulated points, generated by assuming the estimated function 
(solid red line) is the true data-generating process and adding sampling variation to generate 
each data point. These points show how such a graph might appear when exclusion and mono-
tonicity are satisfied. Since sampling variation will be larger in settings with fewer cases per 
judge and smaller with more cases per judge, both the distance of the points from the line and 
the underlying sample sizes are relevant for whether the test will reject the null.

Given these results, either the strict exclusion condition or pairwise monotonicity (or both) 
are likely to be violated in our setting. As discussed in Sections 5.2 and 5.4, the weaker average 
exclusion and average monotonicity conditions are more likely to be satisfied in this setting. 
These alternative conditions also mean IV estimates using our judge leniency instrument iden-
tify a proper weighted average of complier causal effects.

How plausible are these alternative identifying conditions? As noted in Frandsen, Lefgren, 
and Leslie (2023), two exercises can provide evidence on the validity of both the average exclu-
sion and average monotonicity conditions. First, average exclusion can be assessed by examin-
ing the correlation between the judge-level propensity for pretrial release and the alternative 
judge-level channels that are observed. Average exclusion implies these correlations should 
be zero. Second, the average monotonicity condition requires that the covariance between 
judges’ covariate-specific treatment propensity and the judges’ overall propensity is nonnega-
tive. This implies that the first-stage coefficient on the jackknifed fitted value is positive within 
each group defined by baseline characteristics.

While we lack data on alternative judge-level channels to test average exclusion, Table 3 
provides results from our assessment of average monotonicity. We report first-stage results 
for a variety of subgroups of defendants and find that release status is consistently positively 
correlated with the judge leniency instrument. Since we find no evidence violating the condi-
tion of average monotonicity, we move forward and interpret IV estimates using our CJIVE 
instrument as a local average treatment effect of pretrial release on conviction.

We report our main results on the effects of pretrial release in Table 4. Columns 1–4 pro-
vide a set of benchmark results. We begin with OLS estimates of equation (8) in column 1. 
This descriptive result indicates that being released is associated with a 23.2 percentage point 
reduction in the probability of conviction. The next three columns turn to the IV results: 
Column  2 reports 2SLS using the vector of judge dummies as excluded instruments, and 
columns 3 and 4 report IJIVE and UJIVE, jackknifing at the individual level. These point 
estimates are larger in magnitude than the OLS results. The final two columns report our 
preferred results that use the CJIVE estimator to leave out each defendant’s cluster (shift) in 
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the calculation of the judge leniency measure. The point estimate in column 5 indicates that 
pretrial release reduces conviction rates by 43.2 percentage points. The 95 percent confidence 
interval around the point estimate is wide, stretching from ​−83​ to ​−3​ percentage points. The 
inclusion of additional covariates in column 6 yields a point estimate of ​−0.500​ with a more 
narrow confidence interval.37

The results in Table 4 demonstrate that the choice of estimator matters. The OLS result 
appears to substantially understate the impact of release on defendant convictions, as does 
2SLS, which is biased toward OLS when there are many judges. In addition, the pattern of 

37 As one point of comparison, Dobbie, Goldin, and Yang (2018) also find that pretrial release has a significant negative 
impact on the likelihood of conviction, although the magnitude of their estimate is smaller.

TABLE 3 
First Stage Analysis for Pretrial Release

Full sample Male Black Prior offender Any drug Any violent Any property Felony case
(1) (2) (3) (4) (5) (6) (7) (8)

​​​p ˆ ​​ i​ 
CJIVE​​ 0.314 0.248 0.326 0.288 0.302 0.069 0.269 0.161

(0.067) (0.069) (0.083) (0.078) (0.120) (0.108) (0.090) (0.088)

Observations 91,282 77,087 47,861 51,394 26,189 19,312 33,047 47,927

Notes: This table is an analysis of the first-stage impact of judge leniency on pretrial release. Each column reports the 
results of a first-stage regression where the instrument is defined as the CJIVE measure of judge leniency. The first 
column reports the results from regressing the indicator for pretrial release on the CJIVE measure for the full sam-
ple and the vector of court-by-time fixed effects. Columns 2 through 8 show results from repeating this regression 
for subsamples of defendants. Standard errors clustered at the shift level are presented in parentheses.

TABLE 4 
Second Stage Analysis for Pretrial Release

OLS Judge dummies IJIVE UJIVE CJIVE
(1) (2) (3) (4) (5) (6)

Released −0.232 −0.272 −0.294 −0.293 −0.432 −0.500
(0.007) (0.066) (0.107) (0.109) (0.203) (0.168)

Jackknife No No Individual Individual Cluster Cluster
Additional covariates No No No No No Yes

Notes: This table reports estimates of the effects of pretrial release. The sample size for all specifications is 91,282. 
The mean of the indicator for being convicted, the dependent variable in all specifications, is 0.585. For comparison, 
column 1 shows results from an OLS regression of an indicator for being convicted of any charge on an indicator for 
being released pretrial. Column 2 shows estimates from a 2SLS regression of the conviction indicator on the pretrial 
release indicator where a vector of judge dummies instruments for the pretrial release indicator. The IV estimates in 
columns 3–6 use jackknife estimators rather than simply instrumenting using judge dummies. In columns 3 and 4, 
the jackknifing is done at the individual level using the IJIVE and UJIVE estimators. In column 5, the jackknifing is 
done at the cluster level. In column 6, the jackknifing is done at the cluster level and an additional vector of demo-
graphic and case characteristic controls is included. All specifications include a vector of court-by-time fixed effects.
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results shows the bias of IJIVE and UJIVE toward OLS in the presence of clustered treat-
ment assignment. As noted in Section 3, when defendants are assigned to judges in groups or 
shifts, it is possible for each defendant’s characteristics, both observed and unobserved, to be 
systematically related to the characteristics of other defendants in their cluster. This implies 
that a defendant’s potential outcomes may be correlated with the treatment status of other 
defendants within the same cluster. In our setting, one possibility is that a group of defendants 
arraigned in the same weekday hearing shift could have correlated characteristics because the 
nonrandom deployment of police across the city over time leads to defendants with similar 
backgrounds being arrested on the same day.

Why does the choice of estimator matter? In addition to endogeneity, the IV estimates likely 
differ from OLS estimates due to the fact that our preferred IV estimates represent causal 
impacts among the subset of complier defendants. Following standard practice, column 4 of 
Table 1 summarizes compliers in our sample in terms of their average case and defendant char-
acteristics. As noted in Abadie (2003), complier-weighted averages for characteristics or potential 
outcomes can be estimated using an IV model where the interaction between the characteristic 
of interest and the treatment indicator is specified as the dependent variable of interest.38

The key finding from this descriptive exercise is that compliers have cases that are typi-
cally less severe and involve lower-level offenses relative to average. Relative to the sample 
average, Table 1 shows that compliers are charged with fewer offenses (1.01 versus 1.63), 
have a much lower likelihood of being charged with a felony offense (0.28 versus 0.52), and 
are much less likely to be charged with a violent crime (0.05 versus 0.21).39 The last row of 
Table 1 reports the estimated share of compliers who would be convicted if they had not been 
released, revealing that 96 percent would be convicted in this “untreated” state. The fact that 
nearly all compliers would be convicted when they are not released is consistent with the idea 
that many defendants prefer a plea deal (which results in conviction) for their low-level crime 
relative to staying behind bars for an indeterminate length while they await trial.40

As a final exercise, we conduct sensitivity analysis in our pretrial release setting. Virtually 
all researchers using an examiner tendency design will choose to exclude observations from 
examiners who see relatively few cases. In our main analysis sample, we exclude cases assigned 
to judges who held fewer than 200 bail hearings. Of course, the decision of exactly what cutoff 
to specify is subject to discretion, so we recommend demonstrating that results are robust to 
varying the minimum allowable cases per judge. In Table 5, we estimate our preferred speci-
fication (see column 5 in Table 4) using various minimum numbers of cases per judge to con-
struct the sample. The estimate in column 2 of Table 5 is somewhat larger than the estimate 
from our preferred specification, but overall the results are not sensitive to varying this analysis 
sample inclusion criterion.

38 In such a model, the resulting IV estimate for the coefficient on the treatment variable is the complier-weighted 
average of the variable in the treated state. Note that it is also possible to estimate complier-weighted averages using the 
interaction between the characteristic of interest and an indicator for not being treated as the dependent variable in an IV 
model. Table 1 uses both approaches with our preferred IV specification and averages the results.

39 Dobbie, Goldin, and Yang (2018) use data from Miami and Philadelphia and present similar estimates of complier 
characteristics. As we noted above with the statistics on released and detained defendants, the finding that compliers are 
associated with relatively low-level offenses is potentially due to the fact that the probability of failure to appear in court is 
a key judicial criteria for pretrial release.

40 For defendants charged with misdemeanors in our sample, cases where the defendant was released take about three 
times as long to resolve as those where the defendants were detained (152 days versus 49 days), consistent with the possibil-
ity that detaining people faced with low-level charges pretrial induces them to accept plea deals relatively quickly.
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8.  Concluding Remarks

Random assignment to examiners who vary in their tendency to administer treatments or 
other interventions provides researchers with opportunities to evaluate policies in a range of 
contexts. The credibility of an examiner-based research design hinges on the institutional and 
contextual features that assign individuals to the examiner. Moreover, interpreting the results 
from examiner tendency approaches rests on a number of supplemental identifying conditions 
holding and the appropriateness of various implementation decisions. In this review article, 
we highlight best practices regarding estimation and inference in examiner-based IV strategies 
and motivate these choices in an econometric framework.

We conclude by highlighting areas where active methodological research on examiner ten-
dency designs will continue to refine best practices. One area of active research quantifies 
violations of the monotonicity conditions that are key to examiner designs and assesses the 
magnitude of any resulting bias. Sigstad’s (2023) recent study makes progress in this direction. 
He provides novel large-scale evidence on the extent of monotonicity violations by studying 
four judicial settings where it is possible to observe panels of judges making decisions over 
the same case. Intuitively, he tests for violations of monotonicity by examining disagreements 
when judges serve on panels. To illustrate, imagine that one judge is more strict than another 
in an initial case where they are both assigned, but the reverse is true in a subsequent case. In 
this scenario, the decisions in one of the cases must violate monotonicity. His analysis finds that 
pairwise monotonicity is frequently violated in all the settings that he considers and is difficult 
to detect using the standard monotonicity tests described in this guide. However, his analysis 
also shows that violations of the less stringent average monotonicity condition are much less 
frequent and the negative IV weights associated with cases violating average monotonicity are 
small. These results provide some reassuring evidence that 2SLS estimates are not severely 
biased due to violations of the traditional monotonicity condition, at least in some settings.

Finally, the thorny problem of multiple treatments with heterogeneous effects is a focus of 
active econometric research. In such settings, recent research has highlighted that linear 2SLS 

TABLE 5 
Robustness to Varying Sample Restriction

50 cases/judge 100 cases/judge 200 cases/judge 300 cases/judge
(1) (2) (3) (4)

Released −0.428 −0.486 −0.432 −0.426
(0.198) (0.207) (0.203) (0.203)

Observations 93,909 93,413 91,282 86,375
Mean of dep. var. 0.583 0.583 0.585 0.584

Notes: This table provides a sensitivity analysis based on varying the sample inclusion 
criteria for number of cases per judge. Each column reports the IV estimated effects 
of pretrial release from our preferred specification from samples that use alternative 
criteria. Column 1 begins with the least restrictive criteria of including cases assigned 
to judges who see at least 50 cases. Columns 2, 3, and 4 report results by increasing 
the threshold number of cases to 100, 200, and 300, respectively. The main sample 
for our analysis is based on the threshold of 200 cases per judge. Standard errors 
clustered at the shift level are presented in parentheses.
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with multiple endogenous variables can identify a positively weighted average of treatment 
effects only when relatively strong conditions on examiner decision-making hold. Recognizing 
the limitations of conventional 2SLS approaches in settings with multiple treatments, several 
frontier empirical studies such as Humphries et al. (2024), Rivera (2023), and Kamat, Norris, 
and Pecenco (2024) combine examiner-based variation in tendencies with novel estimation 
approaches—often based on structural models of examiner decision-making—to estimate the 
causal effects of multiple treatments. A useful avenue for future research is the development 
of empirical tests of the validity of their identifying assumptions.
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