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1 Introduction

In 1932, criminologists in New Jersey documented wide disparities in the sentencing tendencies
of trial judges in their state. The most severe judge imprisoned 57.7% of the convicted defendants
randomly assigned to their courtroom, and the most lenient only 33.6% (Gaudet et al., 1932).
The same study also described an early experiment in which over a hundred mathematics teachers
were asked to grade the same exam, producing scores that ranged from 28 to 92. While variation in
decision-maker tendencies raises issues of fairness, it also provides a convincing empirical strategy.

In the past two decades, researchers have begun using disparities among judges and other
decision makers like those documented nearly a century ago to identify causal effects in non-
experimental settings. For example, in pioneering work, Kling (2006) estimated the impact of
incarceration length on post-release labor market earnings by leveraging plausibly exogenous vari-
ation in sentencing arising from the rules that assign offenders to judges.1 This strategy is some-
times called the “judge fixed effects” design or “judge leniency” design. We will generally refer
to this strategy as the “examiner tendency” design, since it has been applied in at least 71 stud-
ies across a range of settings that feature various types of decision-makers (see Table A.1 in the
online appendix). Recent examples include studies of the effects of pre-trial detention, consumer
bankruptcy, foster care, disability benefits, patents, medical diagnoses, and health treatments.

The key ingredient in this research design is that examiners with different tendencies will ex-
pose comparable individuals to different treatments or interventions. In the ideal scenario, admin-
istrative procedures ensure that assignment to examiners is independent of other factors that deter-
mine the outcome besides the treatment, and examiners affect outcomes only through the treatment
of interest. Quasi-random assignment to examiners mimics random assignment to treatment and
control groups in a randomized control trial.

This paper aims to provide an up-to-date overview of examiner tendency designs and create
a guide for researchers interested in applying this method. Our overview is motivated by recent
methodological work and the fact that there is no single comprehensive summary of what is under-
stood about examiner tendency designs. We aim to clarify the conditions under which examiner
tendency designs will succeed or fail. Moreover, we hope to provide a guide for common imple-
mentation decisions that are not (currently) covered in standard econometric texts.

To set the stage for the rest of the paper, the following overview highlights our key points about
examiner tendency designs:

• The validity of the examiner tendency design rests not only on random assignment (or
conditional random assignment), but also on exclusion and monotonicity assumptions.

1In earlier work, Waldfogel (1995) leveraged variation across judges to calibrate a structural model and study the
selection of cases for trial.
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Exclusion requires that examiners only influence outcomes only through the treatment of
interest, and monotonicity requires that an individual treated by an examiner with a lower
propensity to treat would surely be treated by an examiner with a higher propensity. Un-
der these assumptions, instrumental variables (IV) estimation identifies a proper weighted
average (i.e., one using nonnegative weights) of local average treatment effects (LATEs).
This weighted average reflects causal effects for individuals who would have received a dif-
ferent treatment status if they had been assigned to a different examiner. In addition, the
strictest version of monotonicity—dubbed pairwise monotonicity—also allows identifica-
tion of marginal treatment effects (MTEs). Under a weaker version, average monotonicity,
which allows for violations of pairwise monotonicity, the IV estimand still has a causal in-
terpretation, but MTEs are no longer identified.

• When examiners affect outcomes through multiple treatments, the design fails to iden-
tify causal effects without strong assumptions about how outcomes respond or how
examiners decide on treatments. If outcomes respond to treatments linearly and with con-
stant effects, linear IV identifies them, as long as the number of treatments does not exceed
the number of examiners and examiners vary sufficiently in their propensities. Outside of the
constant treatment effects framework, however, linear IV only identifies proper weighted av-
erage effects under stringent—and, in many cases, difficult to motivate—restrictions on how
examiners allocate individuals to treatments (Humphries et al., 2023; Bhuller and Sigstad,
2022).

• Jackknife instrumental variables estimation (JIVE) eliminates many-instruments bias
that could distort IV estimation when there are many examiners. In the simple case with
no additional covariates, JIVE is equivalent to the common practice of IV estimation using
a leave-out mean as the instrument. When there are additional exogenous covariates, the
improved jackknife procedure (IJIVE) proposed by Ackerberg and Devereux (2009) or the
unbiased jackknife estimator (UJIVE) proposed by Kolesár (2013) ensures that covariates
are handled consistently in the first and second stages and eliminates additional biases that
can accompany the estimation of covariate effects. When individuals are assigned to exam-
iners in clusters or groups, the jackknife leave-out procedure should be at the cluster level
(Frandsen et al., 2023b).

• Whether clustering is necessary and, if so, the appropriate level at which to compute
standard errors, depends on how individuals are assigned to examiners. For example,
if each individual is separately randomized to an examiner, no clustering is necessary. If
individuals are assigned to examiners in batches or shifts (and individuals are not randomly
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assigned to the batches), inference should be clustered at the batch or shift level (Abadie
et al., 2022).

• While identifying assumptions ultimately rest on institutional and economic founda-
tions, specification tests can probe their empirical plausibility. Familiar balance tests
from the RCT methodology can be used to assess random assignment to examiners. Clas-
sical overidentification tests (e.g., Sargan, 1958) probe the exclusion restriction in a linear
framework. A battery of recent procedures test exclusion and monotonicity conditions when
effects are heterogeneous, including Kitagawa (2015), Norris et al. (2018), and Frandsen
et al. (2023a). We do not recommend on the common practice of screening based on whether
the first-stage F -statistic exceeds a threshold value. Such screening can exacerbate distor-
tions from weak instruments. A valid alternative is to screen on the sign of the first-stage in-
sample correlation between the JIVE instrument and treatment (Angrist and Kolesár, 2024).
Below we provide simulation-based evidence to support this recommendation.

The remaining sections of the paper are organized as follows. Section 2 formally introduces
an econometric framework based on constant treatment effects. Our initial focus on constant treat-
ment effects provides us with a foundation to discuss basic issues surrounding the examiner re-
search design. To accompany our econometric framework, we also introduce a conceptual model
of examiner behavior to show how basic econometric conditions translate into assumptions about
examiner decision making. In Section 3, we discuss estimation in the case of constant treatment
effects. Our discussion highlights the importance of jackknife instrumental variables (JIVE) to
address bias that can arise when attempting to use variation in examiner tendencies in two-stage
least squares (2SLS) estimation. As previewed above, this section also highlights the need for in-
ternally consistent use of covariates in IV models. Section 4 covers inference, including guidance
on clustering. Our discussion in Section 5 extends our formal framework to consider heteroge-
neous treatment effects and highlights the necessity of monotonicity and exclusion restrictions
for identification of conventional weighted average treatment effect parameters. We also discuss
key assumptions behind the estimation of marginal treatment effects and identification in settings
where examiners can influence outcomes through multiple channels. Section 6 reviews empirical
tests that shed light on the plausibility of key identifying assumptions. We provide a detailed guide
to implementing examiner tendency research designs by conducting a case-study analysis of the
effects of pre-trial detention in Section 7. The code and data for the empirical example are avail-
able online. Finally, we conclude in Section 8 with a discussion of recent innovations in the use of
examiner research designs as well as areas for future research.

4



2 Framework

In this section, we lay out a simple econometric and conceptual framework. We begin with a
standard linear model with constant treatment effects. Although restrictive, the constant treatment
effects framework provides a simple setting to discuss most of the practical issues around iden-
tification, estimation, and inference. In Section 5, we consider additional issues that arise when
treatment effects are heterogeneous. As it turns out, the estimation and inference approaches we
propose for the simpler constant treatment effects case carry over to the more general heteroge-
neous treatment effects case.

2.1 Basic econometric model

We seek to estimate the effects of a binary treatment, such as pre-trial detention or placement
into foster care, denoted by the indicator Di. Let Yi (0) be the potential outcome if individual i
is untreated, and let Yi (1) be the potential outcome if treated. Individual i’s realized outcome is
Yi = Yi (0) + (Yi (1)− Yi (0))Di, and the effect of treatment for individual i is Yi (1) − Yi (0).
For now, we assume treatment effects to be constant: Yi (1)− Yi (0) = δ for all i. In this case, the
realized outcome is

Yi = α + δDi + εi, (1)

where we define εi = Yi (0)− E [Yi (0)] and α = E [Yi (0)].
Despite the simplicity of the model, estimation of δ poses a challenge. In many settings, treat-

ment status Di will be related to other determinants of the outcome, here captured by εi. As a
result, Di will be endogenous, and ordinary least squares estimates of δ̂ will be biased.

We now assume that an examiner such as a judge determines each individual’s treatment status
and examiners may differ in their decisions. Let Ji ∈ {1, . . . , k} denote the judge to whom
individual i is assigned. Let Di (j) be individual i’s potential treatment status if assigned to judge
j, and define judge j’s propensity as p (j) = E [Di (j)]. In our notation, j indexes specific judges
and Ji is a random variable corresponding to the judge to whom individual i is assigned.

While examiners affect treatment status, we assume they have no other effects on outcomes—
i.e., an exclusion restriction assumption. To be precise about what this means, we expand the
potential outcome notation above to reflect examiner assignment. Let Yi (0, j) be individual i’s
untreated potential outcome if assigned to examiner j, and likewise for Yi (1, j). In words, the
exclusion restriction assumption requires that changing examiner assignment from examiner j to
j′ does not change an individual’s potential outcomes. Formally, this condition can be expressed
as follows:

Assumption 1 (Exclusion restriction). Yi (d, j) = Yi (d, j
′) = Yi (d) for d ∈ {0, 1} and all j, j′ ∈
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{1, . . . , k} and for all i.

To identify δ in equation 1, we assume random assignment of individual i to one of k examiners.
This ensures that examiners receive comparable case mixes, and any differences in the probability
of treatment that arise among judges are due to differences in examiner propensities, not differences
in the individuals assigned to the examiners.2 The random assignment assumption is formally
expressed as:

Assumption 2 (Examiner random assignment).
(
Yi (0) , Yi (1) , {Di (j)}kj=1

)
are jointly indepen-

dent of Ji.

This assumption means that judge assignment is unrelated to an individual’s potential outcomes or
potential treatment status.

Random assignment to examiners means that we can identify examiner propensities as simply
the average treatment status among individuals assigned to each examiner: p (j) = E [Di|Ji = j].
Equivalently, if we defineZi to be a k×1 vector of examiner indicators, we can express propensities
in terms of the following regression equation:

Di = Z ′iπ + νi, (2)

whereE [νi|Zi] = 0 by definition. The propensity of the examiner to whom individual i is assigned
is given by p (Ji) = E [Di|Zi] = Z ′iπ. The treatment residual, νi, captures everything that deter-
mines treatment status besides the assigned examiner. For example, if Di were an indicator for
pre-trial release, νi might include factors like prior criminal history, the severity of the charge, and
other characteristics of the defendant that bail judges might take into consideration when deciding
on release or detention. These other factors may also influence the outcome—that is, νi and εi
may be correlated. For example, defendants with a prior criminal history may be more likely to
be detained prior to trial, and more likely to be ultimately convicted. This correlation is why an
ordinary least squares regression based on equation (1) is likely to obtain biased estimates.

The outcome equation (1) and treatment equation (2) fit into the standard linear instrumental
variables framework. Given the exclusion restriction and examiner random assignment, instrumen-
tal variables estimators can consistently estimate the parameter δ provided examiners vary in their
treatment propensity. At a minimum, this requires that there exists at least one pair of examiners
whose propensities differ from each other’s, as the following assumption makes precise:

2In some contexts, examiners or judges may be conditionally randomly assigned. For example, defendants charged
with felonies might be assigned to a different set of judges from those charged with misdemeanors. In this case, the
analysis should control for the covariates conditional on which judges are randomly assigned. Section 3.3 discusses
how covariates may be incorporated.
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Assumption 3 (Nontrivial variation in propensities). For some µ > 0 there exist examiners j, j′ ∈
{1, . . . , k} such that |p (j)− p (j′)| ≥ µ and min {Pr (Ji = j) ,Pr (Ji = j′)} ≥ µ.

The exclusion restriction, examiner random assignment, and nontrivial variation in propensi-
ties satisfy the traditional instrumental variables requirements of exogeneity and relevance.3 As a
result, the treatment effect δ is identified by the usual instrumental variables estimand:

δ =
Cov (Yi, p (Ji))

Cov (Di, p (Ji))
. (3)

Equation (3) shows that δ is identified. Note that it is not an estimator because the expression
involves population covariances and true judge propensities—neither of which are observed. Sec-
tion 3 covers estimation in this baseline case when the treatment of interest has constant effects.
We subsequently discuss causal inference when treatment effects are heterogeneous and intro-
duce monotonicity assumptions (which become necessary for identification when effects are not
assumed to be constant) in Section 5.

2.2 Conceptual model of examiner decision-making

In this section, we lay out a simple conceptual framework that models examiner decisions as a cost-
benefit problem.4 The solution to the decision problem is a threshold crossing rule that compares
the probability that treatment has positive net benefit to a cutoff value. This cutoff value may vary
across examiners because of differences in preferences or information. For concreteness, we frame
the model in the context of judges deciding over pre-trial detention.

Let Di (j) denote judge j’s decision for defendant i: Di (j) = 1 when the decision is to detain,
and Di (j) = 0 when the decision is to release. Judges value preventing defendants from engaging
in misconduct prior to trial, such as failing to show up for the trial or committing crimes between
the arrest and trial. Let θi be a binary indicator for whether defendant iwould engage in misconduct
if released. Of course, not all defendants would engage in misconduct if released, and judges also
value allowing defendants their freedom while they await trial. We represent judge j’s preferences

3The non-trivial variation in propensity condition in Assumption 3 is equivalent to the standard instrumental
variables relevance condition. For instance, in Imbens and Angrist (1994), the condition is defined as the assumption
that the conditional expectation of treatment is a non-trivial function of the instrument. That is, E [Di|Zi = w] is
non-trivial function with respect to values w in the support of Zi.

4See Canay et al. (2023) for an alternative model of examiner decision-making that is based on a generalized Roy
model (Heckman and Vytlacil, 2005).
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over these competing values using the following utility function:

Uj (d; θi) =


0 , d = 0, θi = 0

−aj , d = 0, θi = 1

−bj , d = 1, θi = 0

cj , d = 1, θi = 1

, aj ≥ 0, bj ≥ 0, cj ≥ max {−aj,−bj} .

The utility function means that judge j incurs a cost of aj if a defendant is released who then goes
on to engage in misconduct, a cost bj if a defendant is detained who would not have engaged in
misconduct, and a benefit cj if a defendant is detained who would have engaged in misconduct. The
requirement that cj ≥ max {−aj,−bj} reflects the intuition that judges prefer correct decisions to
incorrect ones.5 We normalize the utility of releasing a defendant who would not have engaged in
misconduct to zero.

If judges knew θi, the optimal decision rule would be clear: release if θi = 0 and detain if
θi = 1. But judges have no crystal ball and must make do with the information they have. We
denote the information that judge j has about defendant i at the time of the arraignment hearing
by vij . The index j allows for the possibility that judges may differ in the information available
to them or in skill at eliciting and interpreting the relevant information. We assume judges choose
detention status by maximizing expected utility conditional on their observed information:

Di (j) = arg max
d∈{0,1}

E [Uj (d; θi) |vij] .

A little algebra shows that judge j will detain defendant i if the defendant’s probability of miscon-
duct, q (vij) := Pr (θi = 1|vij), exceeds a threshold, τj:

Di (j) = 1 (q (vij) ≥ τj) ,

where the threshold depends on the judge’s preferences:

τj =
bj

aj + bj + cj
.

The threshold rule captures the intuition that judges will be more hesitant to detain defendants (that
is, will apply a higher threshold) when they weigh the costs of detaining a defendant who would
not engage in misconduct more heavily—that is, when bj is larger. Judges who weigh the cost of
releasing a defendant who engages in misconduct more heavily (larger aj) or who value detaining

5If cj < max {−aj ,−bj} it would mean the judge prefers either wrongly releasing or wrongly detaining a
defendant to correctly detaining a defendant.
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a defendant who would have engaged in misconduct more strongly (larger cj) will be more likely
to detain defendants. A judge’s propensity in this framework is

p (j) = Pr (q (vij) ≥ τj|τj) .

Let’s now consider the interpretation of the basic identifying assumptions in this conceptual
framework of judge decision making. The exclusion restriction in this setting means that the
judge’s detention decision, Di (j), is the only way in which defendant i’s outcomes depend on the
judge assignment. It requires that judges differ in no other decision or characteristic that affects
defendant outcomes. For example, if arraignment judges not only make detention decisions, but
also make decisions regarding court-appointed legal representation, then the exclusion restriction
would be violated if court-appointed legal representation affects outcomes.6

Examiner random assignment in this setting means that defendants of particular characteristics
or potential outcomes have the same likelihood of being assigned to any particular judge as defen-
dants of other characteristics or potential outcomes. Judge random assignment would be violated
if, for example, certain judges take cases at particular times of day or days of the week, or if certain
judges “specialize” in particular kinds of cases.

Finally, nontrivial variation in propensities here means that judges differ in their preferences
(i.e., the relative costs of releasing a defendant who engages in misconduct or detaining a defendant
who would not have), information, or skill in eliciting and interpreting the relevant information.
Judges must also have some degree of discretion in the treatment decision. A setting in which
judges would all see the same information about a given defendant and in which their decisions are
dictated by rules or formulas may not give rise to nontrivial variation in propensities across judges.

3 Estimation

3.1 Two-stage least squares

A natural starting place for estimation is the sample counterpart to the instrumental variables esti-
mand in (3), which can be computed using two-stage least squares (2SLS). The first stage, equation
(2), is estimated by OLS:

Di = Z ′iπ + νi,

6Similarly, if judges differ in their tendency to warn or verbally admonish defendants, then there could be viola-
tions of exclusion if these types of judicial behavior matter for defendant outcomes.
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with fitted values p̂ (Ji) = Z ′iπ̂. The first-stage fitted values then serve as an instrument for Di in
the structural equation:

Yi = α + δ̂2SLSDi + ε̂i,

where ε̂i is the 2SLS residual and

δ̂2SLS =
Ĉov (p̂ (Ji) , Yi)

Ĉov (p̂ (Ji) , Di)
.

As long as the identification assumptions discussed above hold and certain standard textbook con-
ditions apply, like independence across observations and a large number of observations per exam-
iner, then δ̂2SLS will be approximately normally distributed with a mean centered on δ and standard
errors that common statistical packages will readily produce.

But many applications of the examiner tendency design feature a large number of examiners
and relatively few cases per examiner. In such applications the textbook approximation fails: 2SLS
is no longer centered on the true causal effect δ, but is biased towards the OLS estimand (i.e.,
Cov (Yi, Di) /V ar (Di)). The bias of 2SLS in this case is a manifestation of the many-instruments
bias documented by Bekker (1994). Under an asymptotic approximation where the ratio of the
number of examiners, k, to the sample size converges to a constant, κ, the probability limit of
2SLS is

δ̂2SLS → δ + κ

(
σεν

σ2
D − (1− κ)σ2

ν

)
,

where σεν is the covariance between εi (the error term in the outcome equation) and νi (the error
term in the first-stage equation), and σ2

D and σ2
ν are the variances of Di and νi. As the number of

examiners gets larger relative to the sample size (that is, as κ approaches one) the bias of 2SLS
approaches σεν/σ2

D, the bias of OLS. The approximation that k/n → κ is not meant to be a
description of the actual data collection process or a promise about future data collection; rather,
it’s meant to better capture the behavior of the estimator in finite samples.

The bias of 2SLS arises with many examiners even if the standard IV assumptions (random as-
signment, exclusion, relevance) are all satisfied. The bias comes from the outsized influenceDi has
on p̂ (Ji) when there are few cases per examiner. Recall that because Zi is a set of indicator vari-
ables, p̂ (Ji) = Z ′iπ̂ is simply the sample average treatment status among the individuals assigned
to examiner Ji, including individual i itself. Because individual i contributes to this sample aver-
age, the sample average will be correlated with Di, and this correlation will be stronger the fewer
cases assigned to that examiner. When the number of cases per examiner is large—equivalently,
when the number of examiners is small—we can safely ignore this extra correlation between Di

and p̂ (Ji). But when there are many examiners, the endogenous variation in Di—the reason for
employing an IV strategy in the first place—contaminates p̂ (Ji).

10



3.2 The case for JIVE

A solution to the many-instruments bias of 2SLS in settings with many examiners is jackknife
instrumental variables (JIVE, Angrist et al., 1999). JIVE cleans up the contamination in p̂ (Ji) due
to the influence of Di by replacing it with p̂JIV Ei = Z ′iπ̂−i, where

π̂−i =

(∑
l 6=i

ZlZ
′
l

)−1 n∑
l 6=i

ZlDl. (4)

In the simplest case with no covariates, p̂JIV Ei is simply the sample average treatment status among
individuals assigned to examiner Ji besides individual i. The JIVE estimate of the treatment effect
is then the usual just-identified IV formula, using p̂JIV Ei as a single instrument:

δ̂JIV E =
Ĉov

(
Yi, p̂

JIV E
i

)
Ĉov (Di, p̂JIV Ei )

.

The jackknife remedy for IV bias now appears in nearly every published study using the exam-
iner tendency design, although it usually goes by the name “leave-out mean” rather than jackknife.7

For example, Dahl et al. (2014) estimate the leniency of the disability insurance examiner assigned
to each case by calculating the examiner’s tendency among all other cases assigned to the exam-
iner. This “leave-out mean examiner propensity measure” is identical to JIVE’s version of the first
stage fitted value when no additional covariates are involved. More care is required when there are
additional covariates (see Section 3.3).

The jackknife or leave-out procedure must be modified when individuals are assigned to ex-
aminers in clusters, such as batches or work shifts. The reason is that unobserved determinants of
outcomes and treatment status—that is, εi and νi—may be correlated within clusters. If individuals
i and j share a cluster, then endogenous variation from individual j’s treatment status, Dj , con-
taminates individual i’s fitted value, p̂i, in the usual observation-level jackknife procedure. This
contamination biases JIVE towards OLS for the same reasons that 2SLS is biased. The solution is
to estimate i’s fitted value, p̂i, leaving out observation i’s entire cluster, not just observation i itself,
a procedure called CJIVE which is explored further in Frandsen et al. (2023b). Denoting the set of
observations in individual i’s cluster as Ci, the CJIVE fitted value is defined as: p̂CJIV Ei = Z ′iπ̂−Ci ,
where

π̂−Ci =

(∑
l 6∈Ci

ZlZ
′
l

)−1 n∑
l 6∈Ci

ZlDl.

7Over 90 percent of the studies we survey in Table A.1 used a jackknife or leave-out procedure for calculating the
examiner propensity measure.
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and the CJIVE estimator is

δ̂CJIV E =
Ĉov

(
Yi, p̂

CJIV E
i

)
Ĉov (Di, p̂CJIV Ei )

.

Note that the CJIVE estimator requires several clusters per examiner as an examiner with only one
assigned cluster would have no observations from which to estimate a cluster-jackknifed propen-
sity. Clustered assignment to examiners also affects inference, an issue explored in detail in Section
4.1.

3.3 Covariates

It is often helpful to condition on a set of covariatesXi, either for the purpose of making the identi-
fying assumptions above more plausible, or to increase precision. For example, suppose one set of
rotating judges presides over weekend arraignments, and another set over weekday arraignments.
Because judges are randomly assigned only conditional on weekend or weekday, the vector Xi

should include a weekend indicator. Similarly, suppose prior criminal history strongly predicts the
outcome. The inclusion of criminal history inXi could improve the estimate’s precision. However,
it may be desirable to omit some factors that predict the outcome (but are not needed to ensure con-
ditional random assignment) from Xi in order to use them in balance tests to assess the assumption
of random assignment (see section 6). Factors that themselves may be affected by treatment or
judge assignment should not be included in Xi, as doing so may introduce bias into the estimator.

Researchers must make a modeling choice for covariates. One possibility is to condition non-
parametrically on covariates by performing estimation separately for each covariate value. This
approach spares the researcher from taking a stand on functional form, but it is only feasible for
discrete covariates that take on few values and have many observations per cell. The more standard
approach is to assume additive separability between the treatment and covariates. Formally, one
assumes that the realized outcome satisfies:

Yi = δDi +X ′iβ + εi, (5)

where we re-define εi = Yi (0)− E [Yi (0) |Xi].
The presence of covariates complicates the leave-out or jackknife remedy for many-instruments

biased discussed above. Two recent estimators adapt JIVE to the case with covariates: the unbi-
ased jackknife estimator (UJIVE) proposed by Kolesár (2013) and the improved jackknife (IJIVE)
procedure proposed by Ackerberg and Devereux (2009). UJIVE proceeds as JIVE but features an
important modification. The jackknifed first stage regression (4), now includes covariates. Fol-
lowing the jackknifed first stage regression, the covariates are partialled out of the fitted values
for Di, also using jackknifed regressions. IJIVE, on the other hand, partials out covariates from
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the outcome, treatment, and examiner dummies prior to the jackknifed first-stage estimation, (4).
Notably, UJIVE remains consistent even when the number of covariates is large (Kolesár, 2013),
while IJIVE may not be. This theoretical edge suggests UJIVE should be considered the default
estimator.8 With either approach, researchers who employ these methods ensure that covariates
are handled consistently in the first and second stages. A researcher who conditions on one set of
covariates in constructing the examiner propensities and a different set of covariates when estimat-
ing effects in a second stage can unwittingly impose spurious exclusion restrictions, biasing the
estimates. Both UJIVE and IJIVE adapt to the case with clustering naturally by simply replacing
the jackknife regressions in both procedures with cluster-level jackknife regressions.

4 Inference

Standard errors, hypothesis tests, and confidence intervals based on the usual heteroskedasticity-
robust IV variance formula provide reliable inference for standard cross-sectional data when in-
dividuals are assigned independently to examiners, as opposed to batches of individuals assigned
as a group to an examiner (Ackerberg and Devereux, 2009). The IV procedures built into statis-
tical software applications like Stata produce estimates of these variances, provided the user has
constructed p̂JIV Ei as above, or, in the case of covariates, the IJIVE or UJIVE variants.

4.1 Clustering

Many applications, however, depart from the standard cross-sectional setting with independent
assignment to examiners. In these cases, inference based on the usual heteroskedasticity-robust
formulas could be misleading. Instead, it may be necessary to use cluster-robust inference. And as
mentioned in Section 3, if inference is clustered, estimation should be, too (i.e., estimation should
employ CJIVE).

Cluster-robust inference requires deciding the level at which to cluster. In the design-based
framework described in Abadie et al. (2022), the level at which to cluster is dictated by the level
at which assignment to examiners occurs. From this perspective, the randomness that generates
sampling variation in the estimates stems from the examiner assignment mechanism. That is, in
hypothetical repeated samples, the estimates of the treatment effect vary because a given individ-
ual’s assigned examiner can change, thereby affecting the potential outcomes that are revealed for
each individual. The cluster-robust standard error formula captures the sampling variation arising

8At the same time, our empirical example described in Section 7 shows that UJIVE and IJIVE give similar results
(see Table 4).
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from clustered assignment to examiners.9 For example, if all individuals in a batch or a work shift
are randomly assigned to the same examiner, then inference should be clustered at the batch or
shift level.10

By contrast, many practitioners cluster at the examiner level,11 perhaps out of a desire to be
conservative by clustering at a coarse level, or because they are positing that error terms are cor-
related among observations assigned to the same examiner. But there is an arbitrariness to these
motivations. Why couldn’t error terms be correlated at an even coarser level? The design-based
approach to inference recommended by Abadie et al. (2020) and Abadie et al. (2022) requires no
arbitrary supposition about the correlation structure of error terms. The clustering level is deter-
mined by an institutional fact: the level at which individuals were assigned to judges.

4.2 Inference and weak identification

Weak identification is another potential concern for inference in examiner tendency designs. In this
setting, weak identification means examiners vary little in their propensities to assign individuals
to treatment. In some IV settings, the conventional asymptotic approximations break down under
weak identification and the usual standard errors can yield misleading inference (Andrews et al.,
2019; Mikusheva and Sun, 2021). This section discusses when weak identification is likely to
cause practical problems, and how to address weak identification in such problematic cases.

The weak identification problem is distinct from the many-instruments problem discussed in
Section 3. Even if identification is strong (i.e., examiners vary substantially in their propensities),
2SLS using examiner dummies as instruments suffers from many-instruments bias. JIVE elimi-
nates the many-instruments bias, but does not necessarily solve the weak-identification problem.
It does, however, allow us to apply recent econometrics findings on how to deal with weak iden-
tification in single-instrument settings. Although the underlying examiner dummies are many, the
JIVE fitted value (i.e., p̂JIV Ei ) behaves like a single instrument (Bhuller et al., 2020).

Recent research has clarified that in single-instrument IV settings, like examiner designs using
a JIVE instrument, weak identification substantially distorts estimation and inference only when
the degree of endogeneity—here, the correlation between νi and εi12—is very high. Angrist and
Kolesár (2024) show that the coverage of 95-percent confidence intervals is distorted by at most
5 percentage points no matter how weak the instrument when the degree of endogeneity is less
than about 0.76. The reason is that although weaker instruments lead to more bias, they also lead

9The design-based approach to inference is distinct from model-based inference. In the latter, sampling variation
in estimates is governed by an assumed joint distribution of the errors terms specified by the model.

10Note that if inference is clustered, then the jackknife estimation should also be clustered at the same level.
11Notable examples include Dobbie et al. (2018) and Bald et al. (2022).
12This expression assumes independent data and homoskedasticity. The expression is a little more involved with

heteroskedasticity or dependent data, like clustering.
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to larger standard errors and wider confidence intervals. When the degree of endogeneity is high
enough, however, weak identification can substantially distort inference.

The large majority of IV specifications in recently published studies exhibit degrees of endo-
geneity below the danger zone of 0.76. The largest estimated degree of endogeneity encountered
in the studies examined by Angrist and Kolesár (2024) was 0.47. Lee et al. (2023) analyzed a
broader set of studies—every single-variable just-identified IV specification published in the top
five economics journals in 2021. Out of 89 such published specifications for which they could
calculate the required statistics, 75 (84 percent) had an estimated degree of endogeneity below the
0.76 benchmark.13

The results in Angrist and Kolesár (2024) suggest, therefore, that in most empirical settings,
the usual IV standard errors and associated confidence intervals should be reliable, even when
identification is weak. But there are certainly empirically relevant scenarios where weak identifi-
cation should not be ignored. What should a researcher to do in these cases? The recent econo-
metrics literature suggests two strategies. First, Angrist and Kolesár (2024) suggest to screen on
the sign of the estimated first stage. In our case, that means proceed with the analysis only if
Ĉov

(
Di, p̂

JIV E
i

)
> 0. This intuitive requirement cuts the weak instruments bias roughly in half.

This differs from the older rule of thumb to proceed only if the first stage F -statistic exceeds 10—a
point that we discuss in detail in our simulation exercises below.14

Second, in cases where the degree of endogeneity is very high, Lee et al. (2023) offer adjusted
critical values (i.e., different from 1.96) that will ensure confidence intervals maintain their adver-
tised coverage. The adjustments depend on the first-stage F-statistic of the single instrument and
the estimated degree of endogeneity. For example, if the first-stage F were 24 and the estimated
degree of endogeneity were .8, their adjustment delivers a critical value of 4.017 for the interval’s
lower bound, and 2.56 for the upper bound.15

The recommendations above are supported by the theoretical analysis in Angrist and Kolesár
(2024) and Lee et al. (2023). We now illustrate via simulations their empirical relevance for exam-
iner designs. In our simulations, we create 100 judges who each assign 100 defendants to a binary
treatment. We generate individual treatment status Di and outcome Yi via a simplified and param-
eterized version of the conceptual model in Section 2.2. Specifically, in the simulations, individual

13They estimate the degree of endogeneity via the sample correlation between first and second stage residuals.
14Note that screening on the sign instead of the magnitude of the first-stage estimate could have implications if

there are multiple screening criteria imposed in the publication process. For example, screening based on the sign
alone implies that studies with less precision will “pass” an initial review. This could have implications for publication
bias if reviewers also prioritize studies that reject the null at conventional statistical significance levels. Studies that
produce empirical results with large standard errors will reject the null only when their estimated effects are large in
magnitude.

15The adjustment, dubbed “V tF ” by Lee et al. (2023) can be implemented in Stata by following instructions on
David Lee’s website: https://irs.princeton.edu/davidlee-supplementVTF.
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i’s treatment status when assigned to judge j is generated as Di = 1 (Φ (vi) ≥ τj), where Φ is the
standard normal CDF, and vi is a standard normal random variable. In terms of the conceptual
model in Section 2.2, vi represents the examiners’ information about individual i’s suitability for
treatment, we set the function q to be Φ, and judge thresholds τj are evenly distributed over a range
of width h centered on 0.5. Judge j’s propensity to assign treatment is pj = 1− τj , and thus judge
propensities are also centered on 0.5 with range h. The simulations explore the consequences of
weak identification by varying h. The case when h is near zero corresponds to weak identification
(as there is little variation between judges), and the case of h = 1 corresponds to very strong iden-
tification (as the least strict judge has a propensity of 0, and the most strict judge has a propensity
of 1). Defendants are randomly assigned to each of the k = 100 judges with equal probability.
Defendant i’s outcome is Yi = δDi + εi, where εi is a standard normal random variable. We gen-
erate εi to have a correlation with vi equal to ρ, which determines the degree of endogeneity of Di.
Across all simulations, we hold the treatment effect constant at δ = 0.3.

Our exercise varies h from 0 to 1 in increments of 0.05 and simulates 1, 000 samples for a
given set of model parameters. In each sample, we construct a confidence interval for δ based on
the point estimate and standard error from each the following four procedures: (1) 2SLS using
judge dummies; (2) JIVE; (3) JIVE, screening on the first-stage F -statistic exceeding 10, a com-
mon benchmark (where the F -statistic is from regressing treatment on the JIVE fitted value); (4)
JIVE, screening on having a positive first-stage coefficient, an approach recommended for IV from
Angrist and Kolesár (2024).

Figure 1 provides results that show how inference depends on instrument strength as well as
the endogeneity specified in the data generating process. Panel A sets ρ = 0.30, a low degree
of endogeneity, and Panel B sets ρ = 0.60, a high degree of endogeneity. The y-axis measures
our main statistic of interest: the fraction of samples associated with each value of h in which the
confidence intervals exclude the true treatment effect. The x-axis corresponds to our measure of
instrument strength, the propensity range across judges.

The main result from this analysis is that JIVE, whose rejection rate is plotted with a dashed
line, never over-rejects, no matter how weak the instrument. This is consistent with similar exam-
iner tendency design simulation results provided in Bhuller et al. (2020, Appendix D) and with the
theoretical analysis in Angrist and Kolesár (2024). In contrast, a naive approach of using 2SLS
with judge dummies (solid line) rejects the truth at a high rate when identification is weak, an
illustration of the well-known inference distortion with weak instruments (Andrews et al., 2019).

What do we observe when using the common practice of screening on the first-stage F -
statistic? The short-dashed line plots the rejection rate conditional on the JIVE first-stage F -
statistic exceeding 10, a standard approach to avoid weak-instrument distortion.16 Conditioning

16Staiger and Stock (1997) propose a rule-of-thumb cutoff of 10 for weak instruments.
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on the F -statistic leads to a rejection rate near 50 percent when the instrument is weak even when
there is a low degree of endogeneity. Recent work suggests an alternative: researchers can use
the usual standard errors provided one conditions on the sample correlation between treatment
and the jackknifed instrument being positive. Angrist and Kolesár (2024) provide evidence that,
after screening on the sign of the estimated first stage, inference based on the usual standard er-
rors is reliable. Our simulations bear this out: the dash-dotted curve shows that the rejection rate
when conditioning on a positive first stage stays near the nominal level, no matter how weak the
instrument.

Our recommendation for practice is therefore not to screen on the first-stage F -statistic. As
demonstrated above, the common practice of screening on the first-stage F -statistic exceeding 10,
or any other level, is unnecessary, and can even be harmful. That said, in line with recommenda-
tions from Angrist and Kolesár (2024), there is little harm in checking that the JIVE instrument’s
first stage goes in the expected direction.17

5 Extensions to basic framework

5.1 Heterogeneous treatment effects

The recommendations for estimation and inference above have all been in the context of a model
with a constant treatment effect. While such a model is a natural starting place, the assumption
of a constant effect is unlikely to be realistic in most empirical settings. In this section, we relax
the assumption of constant treatment effects and show that the recommendations for estimation
and inference above carry through to this more realistic case. Let the treatment effect for person
i be denoted by δi = Yi(1) − Yi(0). In the case of heterogeneous treatment effects, a common
parameter of interest in the literature is a weighted average of treatment effects: E(wiδi)/E[wi],
for non-negative weights wi.

Heterogeneous treatment effects have important implications for the interpretation of the IV
estimand. Recall that the IV estimand is the covariance between assigned examiner propensity and
individual outcomes divided by the variance of the examiner propensity:

δ2SLS =
E [(Yi − E[Yi])(E[Di|Ji]− E[Di])]

E [(E[Di|Ji]− E[Di])2]
. (6)

As discussed in Frandsen et al. (2023a), the assumptions of random assignment and exclusion

17Checking the sign of the first stage in the full sample serves a different purpose from checking that the sign of the
first stage is positive in subsamples. The latter is a test of average monotonicity, discussed in more detail in Section
6. In contrast, the sign of the first stage in the full sample can only be negative if the variation in estimated jackknifed
propensities is entirely driven by statistical noise, rather than differences in true propensities across judges.
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imply that this expression can be written in terms of individual level treatment effects as:

δ2SLS =
E
[(∑k

j=1 λj (p(j)− p)
(
Di (j)− D̄i

))
δi

]
E
[∑k

j=1 λj (p(j)− p)
(
Di (j)− D̄i

)] , (7)

where λj is the probability of being assigned to examiner j, p (j) is the examiner propensity to
treat, p is the average propensity across all examiners (p =

∑k
j=1 λjpj), and D̄i is person i’s

expected treatment status across examiners (D̄i =
∑k

j=1 λjDi(j)).
From this expression, we can see that the IV estimand is a weighted average of individual

treatment effects. The weight for person i is equal to the following sum across all examiners:∑k
j=1 λj (p(j)− p)

(
Di (j)− D̄i

)
, which is proportional to the correlation across examiners be-

tween an individual’s potential treatment status and examiner propensity. As a result, the weight is
largest for people whose potential treatment status is highly correlated with examiner propensity.
Of course, some individuals can have a weight of zero: for example, those whom all examin-
ers would assign to treatment (always-takers) have D̄i = 1 and Di(j) = 1 for all j. Similarly,
those who would not be assigned to treatment by any examiner (never-takers) have D̄i = 0 and
Di(j) = 0 for all j, and these individuals will again receive zero weight. In general, the possibility
that some individuals will have weights equal to zero implies that the IV estimand may not capture
the effects most relevant to certain policy changes (Heckman and Vytlacil, 2005).18

The only individuals who can receive nonzero weight are those whose treatment status is the
subject of disagreement: some examiners would assign to treatment and others would not. An
examiner with an above average treatment propensity (p(j) > p) who would assign a person to
treatment (Di(j) = 1) would have a positive term in the person’s weight summation, as would an
examiner with a below average treatment propensity (p(j) < p) who would not assign the person
to treatment (Di(j) = 0).

The IV estimand has a reasonable causal interpretation when the weights are all nonnegative.
When might some weights be negative? A simple example with two examiners 1 and 2 illus-
trates when this could occur. Suppose that these two examiners have equal caseloads (that is,
λ1 = λ2 = .5) and that the treatment propensities for examiners 1 and 2 are p (1) = 0.75 and
p (2) = 0.25, respectively. This implies p (1) − p = 0.25 and p (2) − p = −0.25. Consider
an individual who would be treated only by the lower propensity examiner (i.e., Di(1) = 0 and
Di(2) = 1). In this individual’s case, Di(1)− D̄i = −0.5 and Di(2)− D̄i = 0.5. In this scenario
λj (p(j)− p)

(
Di (j)− D̄i

)
< 0 for both judges, and individual i is weighted negatively in the

18For example, consider a judicial context where a large policy reform eliminates convictions or incarceration. The
IV estimand from an examiner-based research design will not reflect effects for many important types of individuals
affected by these policies (e.g., those for whom all examiners would always incarcerate).
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IV estimand. This is a problem, because a weighted average like (7), if it includes some negative
weights, can yield values outside of the set of convex combinations of individual treatment effects.
For example, it could produce a negative value even if all individual treatment effects are positive.

A pairwise monotonicity assumption addresses exactly this kind of situation by requiring that
anyone who is treated by one examiner would also have been treated if assigned to an examiner of
equal or greater propensity to treat. Formally, we represent this idea as:

Assumption 4. Pairwise Monotonicity: For all j, ` ∈ {0, ..., k}, either Di(j) ≥ Di(`) or Di(j) ≤
Di(`) for each individual i.

Pairwise monotonicity is sufficient to ensure that each person receives nonnegative weight.
When pairwise monotonicity holds, all individuals who are not always- or never-takers can be di-
vided into groups corresponding to each propensity value p. We say an individual is a p-complier
if they are treated when assigned to an examiner with p(j) ≥ p and not otherwise. Imbens and
Angrist (1994) show that identifying a weighted average of treatment effects (with nonnegative
weights) among complier groups is possible under the above assumptions. Imbens and Rubin
(1997) extend this result a step further to show that when the exclusion restriction, examiner ran-
dom assignment, and pairwise monotonicity all hold, marginal effects for every p-complier group
are identified.

What does the pairwise monotonicity assumption imply for the basic conceptual framework
introduced in Section 2.2? Pairwise monotonicity is implied when all examiners have the same
beliefs or skills at eliciting information: vij = vi. Notably, this common information assumption
implies that all examiners have a shared ranking of individuals in terms of their likelihood of
committing misconduct. In a setting with many examiners, if any two examiners disagree on where
a single individual should fall in the ranking, this individual (a defier) could generate a failure of
monotonicity. Practically speaking, violations of monotonicity may occur when examiners who
are harsh on average may be lenient on particular groups of individuals or types of crimes due to
different underlying beliefs.19

5.2 Heterogeneous treatment effects and heterogeneous rankings

Examiners may not always have a shared ranking of individuals in terms of suitability for treatment
(e.g., because of differences in bias, information or skill).20 This violates the pairwise monotonicity
assumption, but 2SLS may still identify a proper weighted average of treatment effects under
weaker alternative assumptions.

19Consistent with this, a number of studies have documented that examiners differ in their severity behavior with
respect to certain types of crimes or racial groups (Abrams et al., 2012).

20Imbens and Angrist (1994) pointed out that examiners may differ in their rankings if treatment decisions are
based on several criteria.
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A first alternative condition is “average monotonicity”. This assumption simply posits that the
weights in equation 7 are nonnegative (Frandsen et al., 2023a). Formally,

Assumption 5. Average Monotonocity: For all i,
∑k

j=1 λj (p(j)− p)
(
Di (j)− D̄i

)
≥ 0.

Intuitively, the assumption is that examiner-specific treatment status and examiner overall treat-
ment propensity are positively correlated for each person. Equivalently, the average propensity
among judges who would treat individual i must be no less than the average propensity among
judges who would not. When there are only two examiners, average monotonicity is the same
as pairwise monotonicity. With three or more examiners, violations of pairwise monotonicity be-
tween a pair of examiners for a given individual can be offset if there is a positive covariance
between treatment status and propensity across all examiners for that individual. This assumption
allows for the possibility that examiners may not entirely share an ordering in terms of suitability
for treatment (i.e., vij can vary across examiners), as long as these disagreements are not so exten-
sive as to make anyone’s treatment status correlate negatively with examiner propensity. Note that
the “average” in average monotonicity refers to the average relationship between potential treat-
ment status and the propensity across examiners for a given individual. It is important to highlight
that it is not an average across individuals.

Several models of examiner decision-making violate pairwise monotonicity, but are consistent
with average monotonicity. One such model is a variant of the single-index threshold-crossing
model from Section 2.2 that features some examiners engaging in taste-based discrimination by
shifting their cutoffs (i.e., being less lenient) for members of a minority group. In Appendix A, we
provide examples that illustrate how average monotonicity may or may not hold when there are
violations of pairwise monotonicity.

While average monotonicity is plausible in more settings than pairwise monotonicity, it is
also more limited in what it allows IV to identify. Under pairwise monotonicity, IV can identify
marginal treatment effects that can be aggregated to answer a variety of policy questions (Mogstad
et al., 2018). Under average monotonicity alone, marginal treatment effects are no longer identi-
fied.

Chan et al. (2019) provide a second approach, nested by average monotonicity, that relaxes
the assumption of pairwise monotonicity. Their approach specifies a framework that features both
differences in preferences (or skills) across examiners and randomness in the signal examiners re-
ceive about each individual. The latter implies there is uncertainty about the treatment status any
examiner j would assign to each person i. In this framework, they make two assumptions that
are nested within the average monotonicity assumption. Specifically, they assume “probabilistic
monotonicity”: for each pair of examiners, one must have a weakly higher probability of treating
all people than the other. In addition, they also assume “skill-propensity independence" which
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requires that skill is independent of treatment propensity across examiners and probabilistic mono-
tonicity holds for examiners with equal skill. In their empirical application, they find evidence that
violations of these conditions lead to misleading 2SLS estimates, an illustration of the potential for
heterogeneous treatment effects to interfere with identification.

Finally, a third weakening of the conventional monotonicity condition is to assume the “compliers-
defiers” condition described in de Chaisemartin (2017). Under this condition, within any pair of
examiners there may exist some defiers (individuals whom the low propensity examiner would
treat, but not the high propensity examiner), as long as there are at least as many compliers (in-
dividuals who would be treated by the high propensity examiner, but not the low propensity ex-
aminer) with the same local average treatment effect as the defiers. In other words, defiers can be
offset by compliers with the same treatment effect. Because the compliers-defiers condition rests
on the existence of compliers with the same average treatment effect as the defiers, it may hold for
some outcomes and not for others. The set of compliers whose treatment effects are captured in the
2SLS estimate (“surviving compliers") is not necessarily unique, making it potentially impossible
to characterize which individuals drive the estimated effect. The compliers-defiers condition is not
equivalent to conventional monotonicity in the two-examiner case, nor does it nest average mono-
tonicity. This is because the assumption allows for the existence of some people whose treatment
status is negatively correlated with examiner propensity.

We expect that average monotonicity will be the most palatable of the three weaker mono-
tonicity conditions described above in many applications.21 All three approaches allow for the
presence of some defiance (i.e., low propensity examiners treating people who are not treated by
high propensity examiners). In a setting where skill is well-defined, a framework similar to the
one adopted by Chan et al. (2019) may be useful. However, in many settings it is difficult, if
not impossible, to label examiner decisions as being correct or incorrect. The compliers-defiers
condition, while weaker than the conventional pairwise monotonicity condition, is still a condition
that restricts the pattern of behavior between every pair of judges. Motivating the existence of this
granular pattern based on contextual or institutional details may be challenging in many cases.

5.3 Marginal treatment effects

In the case of heterogeneous treatment effects, researchers are often interested in estimating marginal
treatment effects (MTEs). In this section, we describe what MTEs mean in the examiner tendency
setting and why they are useful. The identification of MTEs requires a monotonicity condition that

21Sigstad (2023) studies judicial panels in several settings and provides empirical evidence that suggests that aver-
age monotonicity is a more realistic assumption even in settings where pairwise monotonicity is violated frequently.
As we note in the conclusion, further research assessing the plausibility of monotonicity conditions and magnitude of
bias due to violations of this conditions remains an on-going topic for future research.
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holds for every pair of examiners (e.g. conventional pairwise monotonicity or the compliers-defiers
condition). Therefore, as we will show, MTEs are not identified when pairwise monotonicity fails.

Under pairwise monotonicity, examiners agree on the ordering of individuals in terms of suit-
ability for treatment. MTEs describe how treatment effects vary along the suitability spectrum.
Under pairwise monotonicity, we can without loss of generality assign each individual an index
value Ui, distributed uniformly over (0, 1) corresponding to their location on the suitability spec-
trum. A p-complier, defined above as someone who would be treated by any judge with p (j) ≥ p

and not otherwise, would have Ui = p. The marginal treatment effect at p, defined in Heckman
et al. (2001, 2006) and Heckman and Vytlacil (2007), is defined as the average treatment effect
among p-compliers:

δMTE (p) = E [Yi (1)− Yi (0) |Ui = p] .

MTEs are often of interest in their own right. In the pre-trial detention example, the MTEs give the
effects pre-trial detention for defendants who would always be detained (δMTE (0)), for defendants
who would never be detained (δMTE (1)), and all defendants in between.

MTEs are also of interest because other policy-relevant parameters can be estimated as a func-
tion of MTEs. For example, integrating MTEs over the propensity range from zero to one delivers
the overall average treatment effect (ATE), a parameter often coveted by researchers. Researchers
following this route to the ATE should be mindful both that it relies on pairwise monotonicity and
exclusion while also requiring that judge propensities span the range from zero to one. If the range
of observed propensities is narrower, the estimate for ATE will implicitly extrapolate beyond the
support of observed propensities.22

Heckman and Vytlacil (2005) show that, under pairwise monotonicity and strict exclusion,
these marginal treatment effects are identified provided sufficient variation in examiner propen-
sities. That is, the MTE is the limit of the LATE parameter as the difference in probability of
treatment between two examiners goes to zero, or equivalently, the slope of the reduced form rela-
tionship between outcomes and judge propensities. To see this, consider a case in which there are
just two examiners, one with a lower propensity, p, and one with propensity p′ > p. Let Z be a
binary indicator taking a value of 1 when an individual is assigned to the examiner with a higher
propensity and zero otherwise. In this case, the local average treatment effect is identified by the
Wald ratio between the two examiners:

22Under the compliers-defiers condition in de Chaisemartin (2017), marginal treatment effects for surviving com-
pliers can be recovered under the compliers-defiers condition, but these cannot be integrated over to estimate an
average treatment effect. Because the difference in average outcomes between any two examiners reflects only treat-
ment effects for surviving compliers, the MTEs for surviving compliers are identified. However, the defiers and the
compliers that functionally cancel out the negatively weighted defiers in the estimand will never be represented in the
MTE estimation, making it impossible to estimate a population average treatment effect.
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δLATE(p′, p) =
E(Yi|Zi = 1)− E(Yi|Zi = 0)

P(Di = 1|Zi = 1)− P(Di = 1|Zi = 0)

=
E(Yi|p(Ji) = p′)− E(Yi|p(Ji) = p)

p′ − p
.

With this expression for LATE in mind, the MTE is intuitively identified by a comparison of
outcomes for individuals assigned to examiners whose propensities to administer treatment are
close together. More formally, the marginal treatment effect is identified by:

δMTE (p) = lim
p′→p

δLATE(p′, p) =
∂E(Y |p(Ji) = p)

∂p

For visual intuition, consider the top left panel of Figure 2. Each point on this figure corre-
sponds to a hypothetical examiner who assigns a binary treatment that affects a binary outcome.
The horizontal axis measures p(j), and the vertical axis measures the average outcomes for indi-
viduals assigned to each examiner. As discussed in Frandsen et al. (2023a), when pairwise mono-
tonicity and strict exclusion hold, the slope of the function connecting these points is the MTE at
each point. The function plotted in the bottom left panel illustrates the MTEs at each point p(j).
Since the outcome is binary, each individual’s treatment effect and the associated MTEs must fall
between -1 and 1.23

When pairwise monotonicity does not hold, the LATE estimand between a pair of neighboring
examiners in terms of propensity no longer identifies a marginal treatment effect.24 For intuition,
consider the top right panel of Figure 2, which also plots propensity and average outcome values for
a set of hypothetical examiners. In contrast to the top left panel, the set of points is inconsistent with
pairwise monotonicity for two reasons. First, in the area of the graph marked with an “A”, there
are two examiners with identical propensities, but different average outcomes. If we take these to
be population points (rather than estimates from a sample) and assume that random assignment
to examiners and strict exclusion hold, the pattern at A implies these two examiners differ in the
set of individuals that they assign to treatment, a violation of monotonicity. Similarly, the area
of the graph marked with a “B” shows examiners for whom the estimated LATE between them
would take on impossible values, i.e., outside the interval from negative one to one (as shown in

23Continuous outcomes will only have bounds on the range of possible treatment effects if the outcome itself is
bounded. For example, potential earnings may be unbounded, in which case there would be no mathematical limit to
the change in earnings that a person could experience as a result of treatment. On the other hand, effects on a bounded
continuous outcome will be bounded by the size of the range of the outcome. For example, if defendants charged with
a certain class of crimes can only receive up to 365 days in jail, then treatment effects on jail sentence must range
between -365 and 365.

24Similarly, violations of strict exclusion preclude identification of MTEs.
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the bottom right panel).25 Again, under random assignment and strict exclusion, this pattern is
only possible if examiners disagree on the ordering of people in terms of suitability for treatment
and thereby treat non-nested sets of individuals.

As noted above, the researcher can still estimate a proper weighted average of treatment effects
across all examiners as long as average monotonicity holds. However, without pairwise mono-
tonicity, the Wald estimator between any particular pair of examiners is no longer interpretable as
a causal treatment effect.

5.4 Multi-valued treatments

The canonical examiner tendency design reveals the effects of a single binary treatment. However,
treatment often takes on more than two values, or examiners affect outcomes through multiple
channels. For example, an arraignment judge may decide whether to assign individuals to one of
three pretrial statuses: detention, supervised release, or unsupervised release (three distinct treat-
ment categories).26 In some contexts, the researcher may have interest in a particular channel—the
focal treatment—while all other treatments are considered secondary. In others, several treatment
channels may be observed and of interest to the researcher. In this section, we review what exam-
iner tendency designs identify when treatment takes on more than two values or examiners affect
outcomes through several channels, drawing from recent work on IV in the presence of multiple
treatments.

5.4.1 Variable treatment intensity

In some instances, treatment takes on several ordered values, corresponding to variable treatment
intensity or “dosage.” For example, a judge may choose the amount of bail a defendant must post.
Under exclusion and monotonicity conditions similar to the basic framework above, IV identifies a
weighted average of individual-level responses to a one-unit increase in treatment, or the average

causal response (Angrist and Imbens, 1995). The monotonicity condition adapted to this setting
means that for any pair of examiners, one examiner always assigns individuals to at least as high a
treatment level as the other. The average causal response identified by IV puts positive weight on
individuals whose treatment level would vary across examiners—a generalization of compliers.

25Note that the issue is not that the slope ofE(Y ) takes on both positive and negative slopes; pairwise monotonicity
does not imply thatE(Y ) must be a monotonic function. Rather, it implies that the slope of the expected value function
stay within the interval of possible treatment effect values based on the range of the outcome variable.

26Examiners may also assign individuals to overlapping treatment categories. In the arraignment context, the judge
may decide whether to assign individuals in criminal cases to pretrial detention as well as determining whether they
are eligible to be represented by a public defender. If treatments are overlapping, we can always define exclusive
treatment categories (e.g. detained without a public defender, detained with a public defender, released without a
public defender, and released with a public defender).
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Estimation and inference proceeds much like that for the effects of a binary treatment. 2SLS, or
its jackknife variants described above if there are many examiners, where examiner dummies serve
as excluded instruments for the endogenous treatment intensity variable, produces consistent and
asymptotically normal estimates for the average causal response. The “propensities” estimated in
the first stage would no longer be judge-level probabilities of treatment, but judge-level expected
values of treatment.

5.4.2 Multiple channels

In the cleanest applications, examiners influence outcomes through a single channel. However,
in some settings, examiners make multiple decisions that could impact individual outcomes. For
example, in addition to deciding on pre-trial detention, bail judges may affect outcomes through
the decision to appoint a public defender. This section highlights how the presence of such multi-
ple channels threatens the validity of examiner designs and may render credible causal inference
impossible. We also discuss conditions under which additional channels do not bias IV estimates
for a focal treatment of interest, as well as the conditions under which additional channels can be
accounted for in the estimation. The required conditions that we highlight are stringent, however,
and may be implausible in many settings.

When multiple treatment categories exist, researchers can take one of two approaches. One
strategy is to define treatment using a single binary category. Returning to our pre-trial example, a
researcher could solely define their treatment as an indicator for being detained pretrial and ignore
public defender assignment. This approach effectively collapses the data into two groups although
there are four distinct categories of defendants based on whether or not individuals are detained
pre-trial or receive a public defender. We stress that researchers should keep in mind that this
decision may have consequences. Most importantly, multiple channels can cause violations in
the exclusion restriction that bias IV estimates if the judge decisions across multiple channels are
systematically correlated. Concretely, if judges who are more likely to release defendants pre-trial
are also more likely to appoint a public defender, then differences in average outcomes across
judges with high and low propensities to release defendants are potentially contaminated by the
additional effects of appointing a public defender.

When can researchers safely estimate the effects of a single binary treatment despite the pres-
ence of other channels or treatment categories? If examiners’ influence on outcomes through any
additional channels is uncorrelated with their propensity to assign the focal treatment—a condition
dubbed average exclusion in Frandsen et al. (2023a)—then IV estimates still identify the effect of
interest.27 Average exclusion is a strong assumption and needs justification case by case. If the ad-

27Kolesár et al. (2015) discussed a similar condition and showed identification in a constant effects framework.
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ditional channels—for example, appointment of a public defender—are observed, then researchers
can provide empirical support for average exclusion by checking if examiners’ propensities for the
additional channels are uncorrelated with their propensity for the focal treatment.

Another approach to causal inference in settings with multiple examiner decisions is to ex-
plicitly define each channel as a distinct treatment. This may be necessary in the absence of a
compelling argument for the assumption of average exclusion or when the effects of all channels
are directly of interest. Doing so requires that additional identifying assumptions hold. The classi-
cal approach posits that the outcome depends on treatments linearly with constant effects. Linear
2SLS using examiner indicators as instruments for multiple endogenous variables can identify
those effects relative to the omitted treatment category. This is possible as long as examiners are
randomly assigned and there is sufficient variation in examiners’ propensities to assign the various
treatments.28

As discussed in Section 5, the constant effects assumption can be relaxed in the case of a
single binary treatment, if a monotonicity condition holds, and IV identifies a local weighted av-
erage treatment effect among compliers (Imbens and Angrist, 1994). Is the same true for multiple
treatments? That is, can linear IV with multiple endogenous variables identify proper weighted
averages of heterogeneous treatment effects?29 Ongoing work shows that the answer is yes, but
the additional assumptions required may be difficult to justify in most examiner design settings. In
particular, Bhuller and Sigstad (2022) give the conditions under which linear 2SLS with several en-
dogenous treatments recovers proper weighted averages of treatment effects, and Humphries et al.
(2023) discuss contexts when a conventional 2SLS approach that controls for non-focal propensi-
ties can identify causal effects of the treatment of interest.

Identification in settings with multiple treatments places stringent conditions on examiner de-
cision making. Appendix B describes the conditions required in the Bhuller and Sigstad (2022)
and Humphries et al. (2023) frameworks. In general the two frameworks are distinct, but we il-
lustrate the stringency of the conditions in a special case where they are equivalent: that of three
mutually exclusive unordered treatments, indexed by {0, 1, 2}, and three examiners, also indexed
by {0, 1, 2}. For example, judges in some settings may choose between assigning criminal defen-
dants to probation, paying a fine, or rendering community service. One can define treatment effects
for each “margin” of interest which compare potential outcomes under each treatment d relative to
a reference treatment, which we denote by 0: δ0→di := Yi (d) − Yi (0), where Yi (d) is individual

28Equivalently, one can add examiner propensities for non-focal treatments as controls; the IV coefficient on the
treatment of interest will be the same as if one instrumented simultaneously for all treatments using examiner indica-
tors.

29IV methods beyond linear 2SLS can identify treatment effects in the discrete choice models discussed by Heck-
man et al. (2006), Heckman and Pinto (2018) and Lee and Salanié (2018). We focus on what 2SLS can identify in the
examiners design.
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i’s potential outcome under treatment d. The assumptions proposed in Bhuller and Sigstad (2022)
and Humphries et al. (2023) both restrict how each examiner’s treatment assignment decisions may
differ from an assumed reference examiner, whom we also index by 0.30 The reference examiner
may assign individuals to any of the three treatment categories. Examiner 1, however, may differ
from the reference examiner only in that some of the individuals assigned to treatment 0 by the
reference examiner may be assigned to treatment 1 by examiner 1. Similarly, examiner 2 may
differ from the reference examiner only in that some of the individuals assigned to treatment 0 by
the reference examiner may be assigned to treatment 2 by examiner 2.

Intuitively, when the above restrictions on examiner treatment assignment hold, any difference
in average outcomes between individuals assigned to examiners 0 and 1 reflects only switches from
treatment 0 to treatment 1; similarly, any difference in outcomes between individuals assigned to
examiners 0 and 2 reflects only switches between treatment 0 and treatment 2. In this way, the
researcher can identify proper weighted averages of δ0→di using 2SLS by defining indicators Ddi

for each treatment category d that are equal to one if treatment assignment is equal to d (and
zero otherwise), and instrumenting for these indicators using the examiner dummies (omitting a
reference examiner).

Finally, while the results from Bhuller and Sigstad (2022) and Humphries et al. (2023) are both
helpful for understanding multiple treatments and examiner tendency designs, it is worth noting
two limitations highlighted by their discussions. First, as our example above demonstrates, the
requirements can be limiting in terms of their implications for examiner decision-making patterns.
In line with this, only restrictive models of examiner decision-making can satisfy their identifying
assumptions. For example, threshold crossing models with a single unobservable to determine
treatment can be sufficient for identification (see Bhuller and Sigstad (2022) for a more detailed
discussion); however, these models are restrictive in that they assume judges share a common rank-
ing of individuals in terms of their suitability to receive the treatments being considered. Second,
the assumption that one treatment category serves as the reference treatment should not be viewed
as an arbitrary choice. For example, consider the sentencing judge choosing between probation,
fines, or community service. In our simplified just-identified setting, the researcher must identify
one of these three punishments as a reference treatment—meaning that, for every defendant about
whom judges disagree over the appropriate punishment, the disagreement can only be between two
treatments, with one of the two preferred options always being the reference treatment.

30Humphries et al. (2023) does not explicitly define a reference examiner in its framework. However, in the just
identified case, the conditions there imply the existence of a reference examiner. We demonstrate this point formally
in Appendix B.
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6 Specification testing

Causal interpretation of estimates from an examiner tendency design relies on several identifying
assumptions. As detailed above, these include the (conditional) random assignment of individuals
to judges or examiners, meaningful variation in the propensity of examiners to assign individuals
to treatment and exclusion restrictions whereby examiners only influence outcomes through treat-
ment assignment. In addition, when there are heterogenous treatment effects, the design also relies
on monotonicity assumptions that place restrictions on how individual treatment assignment varies
across examiners. When any of these assumptions are violated, IV may fail to identify causal ef-
fects and estimates may be misleading. For example, if examiners are not randomly assigned, then
IV estimates may reflect selection differences across examiners that are correlated with treatment
propensity. If the monotonicity assumptions are violated, IV may identify an improper weighted
average of treatment effects where some weights are negative. In some cases, this may imply that
the IV estimand is the opposite sign of the true causal effects.

The primary motivation for the identifying assumptions for examiner tendency designs should
be on institutional and economic grounds. At the same time, recent advances in the literature
provide a range of empirical tests that can shed light on violations of the identifying assumptions
in a given setting. In this section, we describe four approaches to testing identifying assumptions
in examiner tendency designs.

• Assessing random assignment: Researchers can use conventional balance tests from the
RCT literature to assess the plausibility of random assignment of examiners. One approach
is to regress the examiners’ treatment propensities on a vector of observed characteristics
and test for their joint significance. Another is to run a series of regressions with observed
characteristics on the left-hand side and examiner indicators on the right-hand side and test
for the joint significance of the examiner indicators. These two approaches differ in the vio-
lations of random assignment they have statistical power to detect. For example, a regression
of an observed individual characteristic on the examiner propensity (instead of examiner in-
dicators) will have greater statistical power to detect violations of random assignment that
are correlated with the examiner propensities. However, one may want a test that also has
power to detect violations that are uncorrelated with examiner propensities if the analysis
will be leaning on the stronger strict exclusion and pairwise monotonicity assumptions. In
this case, one should regress pre-treatment characteristics on the set of examiner dummies.

• First-stage diagnostics: When examiners vary little in their treatment propensities, IV es-
timates from an examiner-tendency design can be biased and confidence intervals mislead-
ing. Researchers traditionally gauge the strength of the instruments by the partial F -statistic
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from a regression of treatment on the instruments, often following the F > 10 rule of thumb
(Staiger and Stock, 1997). As detailed in Section 4, there are pitfalls to this approach in
applications of examiner tendency designs. First, when there are many examiners and the
instruments are taken to be examiner indicators in a 2SLS procedure, the F -statistic can be
a misleading guide to instrument strength (Hansen et al., 2008). Second, conditioning on
the first-stage F -statistic—that is, some researchers may be tempted to discard results that
do not pass the F > 10 test—distorts inference on the second-stage treatment effects, as we
showed in Section 4. We therefore do not recommend that researchers condition on the first-
stage F -statistic. Instead, we recommend using a jackknife-IV estimator (IJIVE or CJIVE)
and applying the recently proposed approach by Angrist and Kolesár (2024) that suggests
conditioning on the sign of the estimated first stage between treatment and the jackknifed
instrument. They show that conditioning on a right-signed estimated first stage reduces
weak-instrument bias without distorting inference—a pattern that our simulation evidence
presented earlier also bears out.

• Testing exclusion and monotonicity conditions: Thus far, the literature recommends two
types of tests. First, researchers can jointly test the conventional strict exclusion and pairwise
monotonicity assumptions using the test described in Frandsen et al. (2023a). This test relies
on the fact that these conventional assumptions imply that individual outcomes averaged at
the examiner level should be a continuous function with bounded slope of the examiner-
level treatment probability (“propensity”).31 Intuitively, the test asks whether the sample
examiner-level mean outcomes and propensities are consistent with population examiner-
level average outcomes and propensities that satisfy the bounded slope condition for each
pair of examiners. Second, the weaker average monotonicity assumption can also be tested
using a procedure suggested in Frandsen et al. (2023a), which amounts to checking whether
first stages within observable subgroups are positive.

• Estimating effects of multiple channels: Researchers must be careful to account for the
presence of multiple treatments in some settings. In the case of constant treatment effects,
Section 5.4 notes that it is possible to instrument for multiple treatments simultaneously
using examiner indicators and recover an estimate of the effect of each treatment relative
to the omitted treatment category. If researchers believe constant treatment effects may be
plausible in their setting, Sargan’s (1958) test of overidentifying restrictions can be helpful.
The Sargan overidentification test can be implemented using pre-existing statistical software
packages that estimate an IV model where all observed treatments are endogenous variables

31For example, with a binary outcome, the largest possible treatment effect magnitude is one. In this case, the con-
ventional strict exclusion and pairwise monotonicity assumptions imply that the conditional expectation of outcomes
given the examiner propensity must have a slope bounded between -1 and 1.
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and the set of examiner indicators are instruments. The testing procedure is based on a
regression of the second-stage residuals on examiner indicators, and assessing the joint sig-
nificance of the examiner indicators. Rejections of the null hypothesis are consistent with
violations of the assumption of constant treatment effects for the endogenous treatments. In
the case of three treatment categories, one can see this test as being equivalent to testing
whether the sample examiner-level mean outcomes and propensities are consistent with the
idea that population examiner-level average outcomes and propensities lie on a plane—an
implication of the constant treatment effects assumption. Testing the assumptions required
for identifying the effects of multiple channels when those effects may be heterogeneous is
still an active area of research (e.g. Bhuller and Sigstad, 2022; Humphries et al., 2023), and
established best practices have not yet emerged.

7 Case study: Effects of pre-trial detention

In this section, we provide a concrete guide to implementing our suggested best practices using an
empirical example that analyzes the effects of pre-trial detention on conviction using an examiner
tendency design in which the decision-makers of interest are bail judges. The code and data for
the example are available online. As in Dobbie et al. (2018), we use a sample of court records
from misdemeanor and felony cases in Miami-Dade County, Florida over the period 2006-2014.
Following arrest, defendants in Miami-Dade were brought to a police station where they could
secure pre-trial release by posting bail that varied based on the seriousness of their offense. The 70
percent of defendants who do not immediately post bail appeared at bail hearings. The bail judge
at the hearing could change the bail amount or impose additional conditions.

As described in Dobbie et al. (2018), multiple bail judges preside over cases that appear
throughout the week in Miami-Dade. Judge assignment typically occurs within 24 hours of ar-
rest, and varies based on the crime category (misdemeanor or felony) and whether hearings are
scheduled during weekdays or weekends. While weekday cases are handled by a single judge,
weekend cases are handled by a rotating cadre of judges. As a result, defendants scheduled during
the same court “shift” (i.e., all cases in a crime category on a given calendar date) would appear
before the same bail judge. There is little scope for manipulating judge assignment given the short
window between arrest and hearings. Bail hearings are unrelated to the process of trial judge
assignment so there is no mechanical relationship between the pretrial hearing process and later
stages of a case.

We use data from court records, which include information on arrest charges, the identities of
bail judges, bail amount and type, if and when bail was posted, as well as defendant characteristics
such as name, gender, race, date of birth, and address. The identifying information for defendants
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allows us to link records and observe whether an individual has a prior criminal case during the
sample period (“prior offenders”). The data also indicate whether the defendant is ultimately
convicted for their case, our outcome of interest.

For our analysis, we follow Dobbie et al. (2018) and restrict our attention to cases assigned to
a weekend bail hearing because these are cases where bail judges are assigned based on a rotating
schedule. In our main analysis, we restrict the sample to cases which have a bail judge who
presided over at least 200 bail hearings during our sample period. Examiners with a small number
of observations have noisily estimated propensities. Removing examiners who make decisions for
only a small number of cases can therefore increase the precision of the estimates as this removes
observations for which the first stage is relatively weak.32 These restrictions leave 91,421 cases,
presided over by 146 unique judges.

Table 1 reports summary statistics for our analysis sample. The first column shows that the
sample is mostly male and split roughly evenly between Black and non-Black defendants. Columns
2 and 3 show that defendants who are released prior to trial are more likely to be white and less
likely to have a prior offense (in the past year) relative to those who are detained. After their bail
decisions have been made and their case is heard, the released defendants are also less likely to
be convicted. These differences are consistent with the hypothesis that pretrial release affects case
outcomes, although the differences in demographics and previous criminal histories motivate the
need to go beyond simple comparisons between released and detained defendants.

We are interested in studying the causal effects of pretrial release, as represented in the follow-
ing model:

Yi = δReleasedi +X ′iβ + εi, (8)

where Yi is a post bail hearing outcome for individual i, Releasedi is an indicator for whether the
individual was “treated” by being released within three days of the bail hearing, and Xi is a vector
of court-by-year-by-day-of-week fixed effects, which we refer to as “court-by-time fixed effects.”
The court indicator distinguishes between felony and misdemeanor cases. The inclusion of Xi

helps bolster the assumption of judge random assignment. Other case characteristics are omitted
from Xi initially in order to use them for balance tests, as discussed in section 3.3.

A key concern is that OLS estimates from equation (8) may be biased if there are unobserved
factors that are correlated with both pretrial release and post treatment outcomes such as whether
the defendant was convicted or commits a new crime in the future. For example, one possibility
is that bail judges may be more likely to release more advantaged defendants who may have the

32There is no objective criteria for choosing the minimum number of cases per examiner, so we recommend (1)
choosing a minimum caseload that is not excessively restrictive in the study setting and (2) demonstrating that changes
the minimum caseload does not change the results substantially as a robustness check.
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lowest likelihood of committing a new crime in the future. In this case, OLS estimates will be
biased toward a finding that pretrial release lowers future criminal activity.

To credibly estimate the causal effects of pretrial release, we employ an IV strategy based on
bail hearing judge assignment. As noted above, our setting implies that defendants are condi-

tionally randomly assigned to judges. Specifically, we assume that within covariate (in our case,
court-by-time) cells, shifts were randomly allocated among the set of judges who had the potential
to be assigned to that cell. Our court-by-time fixed effects allow for the possibility that some judges
may not be available for shifts in all years, may not be present on particular weekend days, or may
work primarily in one court. Because defendants are assigned to judges in shifts, not individually,
we cluster at the shift level and use the CJIVE estimator, which constructs a judge leniency mea-
sure excluding all defendants in the same cluster and handles covariates appropriately as described
in Section 3.

To construct the CJIVE instrument, we first compute two sets of residuals from regressing the
treatment variable (Releasedi) and judge indicator variables on the vector of covariates Xi. We
then regress the residualized treatment variable on the residualized judge indicators, leaving out
one cluster (shift) at a time.33 We form our estimated leniency meausure, p̂i, from the predicted
values of residualized treatment for defendants in the omitted cluster in each regression.

The histogram in Figure 3 shows that there is meaningful variation in this leniency measure.
In addition, the shape of the figure demonstrates that there is a substantive first-stage relationship
between the instrument (p̂i) and the likelihood of pretrial release (Releasedi). A simple linear
regression shows that defendants are 3 percentage points more likely to be released pretrial if they
were assigned to a judge whose estimated release rate was 10 percentage points higher.34

As detailed in Section 5.2, IV estimates of the parameter δ can be interpreted as a weighted
average of the causal effects of pre-trial release when there is treatment effect heterogeneity and the
assumptions of instrument exogeneity, exclusion, and monotonicity hold. Notably, this parameter
represents causal impacts among the subset of complier defendants who would be released by
lenient judges but not by strict judges. As discussed above, we next undertake a series of exercises
to shed light on the plausibility of the usual identifying assumptions invoked in applications of
judge research designs.

Balance tests support the assumption of conditional random assignment of judges to shifts.
Table 2, column 1 reports results from a linear probability model with pre-trial release, the en-

33It is straightforward to use standard statistical program such as Stata to construct the CJIVE estimator. When
assignment to judges is not clustered, researchers can run UJIVE or IJIVE using the “manyiv” package available at
https://github.com/kolesarm/ManyIV. Note that none of the variables should be residualized prior to
running any of these programs.

34The first-stage slope on a 2SLS (i.e., non-jackknifed) fitted value would be one mechanically; the smaller slope
here on the jackknifed fitted reflects sampling uncertainty given the finite number of shifts assigned to each judge and
the fact that p̂i is an out-of-sample prediction.
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dogenous “treatment” variable of interest, specified as the dependent variable and the indepen-
dent variables include defendant and case characteristics as well as court-by-time fixed effects.
These statistically significant estimates demonstrate that defendants who do and do not receive
pre-trial release still have observable differences in baseline characteristics even after controlling
for court-by-time fixed effects. In column 2, the dependent variable is the cluster jackknifed mea-
sure of judge leniency; in contrast to column 1, these results show that the vector of defendant and
case characteristics (which, crucially, were not included in the covariates controlled for during the
construction of the CJIVE instrument) have no significant joint predictive power for the leniency
instrument’s value.

Next, we assess the exclusion restriction and pairwise monotonicity assumptions. The ex-
clusion restriction in our setting may be violated if bail judges influence case outcomes through
secondary channels like appointment of a public defender. Pairwise monotonicity may be violated
if bail judges who are stricter overall would nevertheless release some defendants whom more
lenient judges would detain, perhaps because more lenient judges may be stricter for particular
groups of defendants. The joint test proposed by Frandsen et al. (2023a) can detect these types of
violations. As noted in Section 6, the test examines slope restrictions on the relationship between
the judge-level expected values of the outcome and treatment. When we implement the test using
the Stata package testjfe and specifying conviction as the post bail hearing outcome of interest, we
reject the null that strict exclusion and pairwise monotonicity both hold at the one percent level.

Figure 4, generated using the graph option on the testjfe command, provides intuition for the
results of the test of slope restrictions in our sample. Each point corresponds to a judge and shows
the share of defendants that they see in bail hearings who go on to be convicted (y-axis) along with
their estimated propensity to release defendants pretrial (x-axis). After fitting a flexible function to
these points, the test checks two conditions implied by strict exclusion and pairwise monotonicity:
(1) whether the slope of the fitted function is impossibly large because it exceeds the range of
possible treatment effects sizes, and (2) whether the judge assignment has significant explanatory
power for the outcome after accounting for each judge’s predicted point on the fitted function.
Intuitively, we can think of the fitted function as mapping out a set of candidate population points—
combinations of true propensity to treat and true average outcomes across judges—and the testing
procedure as assessing whether the candidate population points imply impossibly large treatment
effects and whether the distance from the empirical points to the fitted function is consistent with
sampling variation.

In our example, the test rejects the null hypothesis that strict exclusion and pairwise mono-
tonicity both hold because judge assignment has significant explanatory power for outcomes even
after accounting for the judge’s treatment propensity. For comparison, Figure 4 also shows a set of
simulated points, generated by assuming the estimated function (solid maroon line) is the true data
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generating process and adding sampling variation to generate each data point; these points show
how such a graph might appear when exclusion and monotonicity are satisfied. Since sampling
variation will be larger in settings with fewer cases per judge and smaller with more cases per
judge, both the distance of the points from the line and the underlying sample sizes are relevant to
whether the test will reject the null.

Given these results, either the strict exclusion condition or pairwise monotonicity (or both) are
likely to be violated in our setting. As discussed in Sections 5.2 and 5.4, we can rely on the weaker
average exclusion and average monotonicity assumptions. These alternative conditions also mean
IV estimates using our judge leniency instrument identify a proper weighted average of complier
causal effects.

How plausible are these alternative identifying assumptions? As noted in Frandsen et al.
(2023a), two exercises can provide evidence on the validity of both the average exclusion and
average monotonicity conditions. First, average exclusion can be assessed by examining the cor-
relation between the judge-level propensity for pre-trial release and the alternative judge-level
channels that are observed. Average exclusion implies these correlations should be zero. Second,
the average monotonicity condition requires that the covariance between judges’ covariate-specific
treatment propensity and the judges’ overall propensity is nonnegative. This implies that the first-
stage coefficient on the jackknifed fitted value is positive within each group defined by baseline
characteristics.

While we lack data on alternative judge-level channels to test average exclusion, Table 3 pro-
vides results from our assessment of average monotonicity. We report first-stage results for a
variety of subgroups of defendants and find that release status is consistently positively correlated
with the judge leniency instrument. Relying on the assumptions of average monotonicity and av-
erage exclusion, we can move forward and interpret IV estimates using our CJIVE instrument as a
local average treatment effect of pretrial release on conviction.

Our main results on the effects of pre-trial release are reported in Table 4. Columns 1-4 provide
a set of benchmark results. We begin with OLS estimates of equation (8) in column 1. This
descriptive result indicates that being released is associated with a 23.2 percentage point reduction
in the probability of conviction. The next three columns turn to the IV results: Column 2 reports
2SLS using the vector of judge dummies as excluded instruments, and Columns 3 and 4 report
IJIVE and UJIVE, jackknifing at the individual level. These point estimates are notably larger in
magnitude than the OLS results. The final two columns report our preferred results which use
the CJIVE estimator to leave out each defendant’s cluster (shift) in the calculation of the judge
leniency measure. The point estimate in column 5 indicates that pretrial release reduces conviction
rates by 44.4 percentage points. The inclusion of additional covariates in column 6 yields a point
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estimate of -0.509.35

As expected, the results in Table 4 demonstrate that the choice of estimator matters. The OLS
result appears to substantially understate the impact of release on defendant convictions, as does
2SLS which is biased towards OLS when there are many judges. In addition, the pattern of results
shows the bias of IJIVE and UJIVE toward OLS in the presence of clustered treatment assignment.
As noted in Section 3, when defendants are assigned to judges in groups or shifts, it is possible
for each defendant’s characteristics, both observed and unobserved, to be systematically related
to the characteristics of other defendants in their cluster. This implies that a defendant’s potential
outcomes may be correlated with the treatment status of other defendants within the same cluster.
In our setting, one possibility is that a group of defendants arraigned in the same weekday hearing
shift could have correlated characteristics because the non-random deployment of police across the
city over time leads to defendants with similar backgrounds being arrested on the same day.

Why does the choice of estimator matter? In addition to endogeneity, the IV estimates likely
differ from OLS estimates due to the fact that our preferred IV estimates represent causal impacts
among the subset of complier defendants. Following standard practice, Column 4 of Table 1
summarizes compliers in our sample in terms of their average case and defendant characteristics.
As noted in Abadie (2003), complier weighted averages for characteristics or potential outcomes
can be estimated using an IV model where the interaction between the characteristic of interest and
the treatment indicator is specified as the dependent variable of interest.36

The key finding from this descriptive exercise is that compliers have cases that are typically less
severe and involve lower-level offenses relative to average. Relative to the sample average, Table
1 shows compliers are charged with fewer offenses (1.01 vs. 1.63), have a much lower likelihood
of being charged with a felony offense (0.27 vs. 0.52), and are much less likely to be charged with
a violent crime (0.04 vs. 0.19). In addition, the last row of Table 1 reports the estimated share of
compliers who would be convicted if they had not been released, revealing that 97 percent would
be convicted in this “untreated” state. The fact that nearly all compliers would be convicted when
they are not released is consistent with the idea that many defendants prefer a plea deal (which
results in conviction) for their low-level crime to a stay behind bars of indeterminate length while
they await trial.37

35As one point of comparison, Dobbie et al. (2018) also find that pretrial release has a significant negative impact
on the likelihood of conviction, although the magnitude of their estimate is smaller.

36In such a model, the resulting IV estimate for the coefficient on the treatment variable is the complier-weighted
average of the variable in the treated state. Note that it is also possible to estimate complier weighted averages using
the interaction between the characteristic of interest and an indicator for not being treated as the dependent variable in
an IV model. Table 1 uses both approaches with our preferred IV specification and averages the results.

37For defendants charged with misdemeanors in our sample, cases where the defendant was released take about
three times as long to resolve as those where the defendants were detained (152 days vs. 49 days), consistent with
the possibility that detaining people faced with low-level charges pretrial induces them to accept plea deals relatively
quickly.
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As a final exercise, we conduct sensitivity analysis in our pre-trial release setting. Virtually all
researchers using an examiner tendency design will choose to exclude observations from examiners
who see relatively few cases. In our main analysis sample, we exclude cases assigned to judges
who held fewer than 200 bail hearings. Of course, the decision of exactly what cutoff to specify
is subject to discretion, so we recommend demonstrating that results are robust to varying the
minimum allowable cases per judge. In Table 5, we estimate our preferred specification (see
column 5 in Table 4) using various minimum numbers of cases per judge to construct the sample.
The estimates are not sensitive to varying this analysis sample inclusion criterion.

8 Concluding remarks

Random assignment to examiners who vary in their tendency to administer treatments or other in-
terventions provides researchers with opportunities to evaluate policies in a range of contexts. The
credibility of an examiner-based research design hinges on the institutional and contextual features
that assign individuals to the examiner. Moreover, the interpretation of results from examiner-
tendency approaches rests on a number of supplemental identifying assumptions and implementa-
tion decisions. In this review article, we highlight best practices regarding estimation and inference
in examiner-based IV strategies and motivate these choices in an econometric framework.

We conclude by highlighting areas where active methodological research on examiner ten-
dency designs will continue to refine best practices. One such area of active research quantifies
violations of the monotonicity assumptions that are key to examiner based-designs and assesses
the magnitude of any resulting bias. Sigstad (2023) is one recent study that makes progress in
this direction. Specifically, he provides novel large-scale evidence on the extent of monotonicity
violations by studying four judicial settings where it is possible to observe panels of judges mak-
ing decisions over the same case. Intuitively, he tests for violations of monotonicity by examining
judge disagreements. If a given judge is more strict than another in an initial case where they are
both assigned, but the reverse is true in a subsequent case, then decisions in one of the cases must
violate monotonicity. His analysis finds that pairwise monotonicity is frequently violated in all
the settings that he considers and is difficult to detect using the standard monotonicity tests de-
scribed in this guide. However, his analysis also shows that violations of the less stringent average
monotonicity condition are much less frequent and the negative IV weights associated with cases
violating average monotonicity are small. These results provide some reassuring evidence that the
bias in 2SLS estimates due to violations of the traditional monotonicity assumption may be small,
at least in some settings.

Finally, the thorny problem of multiple treatments with heterogeneous effects continues is a
focus of active econometric research. In such settings, recent research has highlighted that linear
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2SLS with multiple endogenous variables can identify a positively weighted average of treatment
effects only under relatively strong assumptions on examiner decision-making. Recognizing the
limitations of conventional 2SLS approaches in settings with multiple treatments, several frontier
empirical studies such as Humphries et al. (2023), Rivera (2023) and Kamat et al. (2023) combine
examiner-based variation in tendencies with novel estimation approaches—often based on struc-
tural models of examiner-decision making—to estimate the causal effects of multiple treatments.
A useful avenue for future research is the development of empirical tests of the validity of their
identifying assumptions.
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9 Tables and figures
Table 1: Pre-trial Detention Case Study: Defendant-level Summary Statistics

(1) (2) (3) (4)

Unweighted Estimate

All Released Detained Compliers

Male 0.84 0.79 0.87 0.69
Black 0.52 0.50 0.54 0.56
Age at bail decision 35.68 33.98 36.50 35.59
Prior offender 0.56 0.43 0.63 0.55
Number of offenses 1.63 1.59 1.66 1.01
Felony charge 0.52 0.56 0.51 0.27
Drug charge 0.28 0.30 0.27 0.20
Violent charge 0.19 0.31 0.14 0.04
Property charge 0.35 0.22 0.41 0.23
Convicted 0.59 0.41 0.67 0.97

N 91,421 29,904 61,517 91,421

Notes: This table provide summary statistics for defendants included in our analysis sample. The first column reports
overall means for the listed variables described in each row. The second column reports means for the subsample
of defendants released pretrial, and the third column shows means for the subsample of defendants detained pretrial.
The fourth column reports estimates of complier-weighted means. We follow the approach from Abadie (2003) and
detailed in Section 7 to estimate complier weighted averages using our CJIVE measure of judge leniency and our
preferred IV specification. The last row presents complier-weighted averages for conviction, which is a post-treatment
outcome variable. For this measure, Column 4 reports the estimated complier-weighted mean in the untreated state
(i.e., the share of compliers who are convicted when they are not released pretrial). Standard errors clustered at the
shift level are presented in parentheses.
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Table 2: Assessing Balance

(1) (2)
Treatment Leniency measure

Male -10.013 -0.019
(0.403) (0.033)

Black -2.325 -0.027
(0.295) (0.025)

Age -0.308 -0.002
(0.012) (0.001)

Prior offender -17.109 -0.005
(0.307) (0.024)

Number of counts -2.244 0.015
(0.129) (0.011)

Felony charge 25.727 -0.612
(9.791) (0.644)

Drug charge 3.365 0.067
(0.426) (0.039)

Violent charge 16.366 0.019
(0.431) (0.034)

Property charge -11.507 0.064
(0.375) (0.029)

Joint F stat 1,221.811 1.531
p-value 0.000 0.131

Notes: This table reports results from a balance test analysis using the sample constructed to study the effects of
pre-trial release. Column 1 reports results from a linear probability model with pre-trial release as the dependent
variable. The independent variables include defendant and case characteristics as well as court-by-time fixed effects.
Column 2 reports results using our preferred judge leniency instrument (CJIVE) as the dependent variable in the linear
probability model. Note that the independent variables have been rescaled (divided by 100) for readability of the
coefficients and standard errors.
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Table 3: First Stage Analysis for Pre-trial Release

(1) (2) (3) (4) (5) (6) (7) (8)

Subsample Results

Pooled Male Black
Prior

offender
Any
drug

Any
violent

Any
property

Felony
case

Z (CJIVE) 0.312 0.246 0.326 0.289 0.285 0.065 0.280 0.159
(0.067) (0.069) (0.084) (0.079) (0.123) (0.111) (0.092) (0.088)

Notes: This table is an analysis of the first-stage impact of judge leniency on pre-trial release. Each column reports
the results of a first stage regression where the instrument is defined as the CJIVE measure of judge leniency. The first
column reports the results from regressing the indicator for pretrial release on the CJIVE measure for the full sample
and the vector of court-by-time fixed effects. Columns 2 through 8 show results from repeating this regression for
subsamples of defendants. Standard errors clustered at the shift level are presented in parentheses.
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Table 4: Second Stage Analysis for Pre-trial Release

OLS Judge dummies IJIVE UJIVE CJIVE

(1) (2) (3) (4) (5) (6)

Released -0.233 -0.274 -0.298 -0.328 -0.442 -0.509
(0.007) (0.066) (0.107) (0.164) (0.205) (0.168)

Jackknife No No Individual Individual Cluster Cluster
Additional covariates No No No No No Yes

Notes: This table reports estimates of the effects of pre-trial release. For comparison, Column 1 shows results from an
OLS regression of an indicator for being convicted of any charge on an indicator for being released pretrial. Column 2
shows estimates from a 2SLS regression of the conviction indicator on the pretrial release indicator, where a vector of
judge dummies instruments for the pretrial release indicator. The IV estimates in Columns 3-6 use jackknife estimators
rather than simply instrumenting using judge dummies. In Columns 3 and 4, the jackknifing is done at the individual
level, using the IJIVE and UJIVE estimators. In column 5, the jackknifing is done at the cluster level. In Column 6,
the jackknifing is done at the cluster level and an additional vector of demographic and case characteristic controls is
included. All specifications include a vector of court-by-time fixed effects.
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Table 5: Robustness to Varying Sample Restriction

(1) (2) (3) (4)
50 cases/judge 100 cases/judge 200 cases/judge 300 cases/judge

Released -0.434 -0.494 -0.442 -0.436
(0.201) (0.210) (0.205) (0.205)

N 94054 93558 91421 86507

Notes: This table provides a sensitivity analysis based on varying the sample inclusion criteria for number of cases per
judge. Each column reports the IV estimated effects of pre-trial release from our preferred specification from samples
that use alternative criteria. Column 1 begins with the least restrictive criteria of including cases assigned to judges
who see at least 50 cases. Columns 2, 3 and 4 report results by increasing the threshold number of cases to 100, 200
and 300, respectively. The main sample for our analysis is based on the threshold of 200 cases per judge. Standard
errors clustered at the shift level are presented in parentheses.
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Figure 1: Weak Instrument Simulation Exercise:
IV Rejection Rate, Nominal 5-percent Test
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Notes: This figure plots simulated rejection rates as a function of instrument strength based on estimates and robust
standard errors from four estimation procedures indicated in the legend. The solid horizontal line indicates the nominal
level of the test (0.05). The data are generated according to the simulation design described in the text. The sample
size is 10,000 with 100 examiners and 100 cases per examiner. The simulations with low degree of endogeneity set
ρ = 0.3 and those with high degree of endogeneity set ρ = 0.6.
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Figure 2: Marginal Treatment Effects Illustration

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1
p(j)

E(Y)

B

A

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1
p(j)

E(Y)

-3
-2

-1
0

1
2

3
4

5

0 .2 .4 .6 .8 1
p(j)

∂E(Y)/∂p(j)

-3
-2

-1
0

1
2

3
4

5

0 .2 .4 .6 .8 1
p(j)

∂E(Y)/∂p(j)

Consistent with pairwise monotonicity     Pairwise monotonicity violated

Notes: This figure illustrates hypothetical population-level data from examiner contexts with a binary treatment and
binary outcome that would be consistent (left panels) and inconsistent (right panels) with the assumption of pairwise
monotonicity. The first row illustrates the relationship between the average outcomes of individuals (e.g., defendants),
E(Y ), and examiner propensities to administer treatment, pj . The second row reports the derivative of expected
outcomes given examiner propensities, ∂E(Y )/∂pj . Note that the area of the graph marked with an “A” in the upper
right subfigure shows two examiners that have the same propensity pj but differ in the average outcomes. These
population points are inconsistent with pairwise monotonicity. If random assignment and strict exclusion hold, two
examiners with the same propensity to treat can only have different average individual outcomes if they differ in the
set of individuals whom they assign to treatment (a violation of pairwise monotonicity). The area marked “B" in the
upper left graph is inconsistent with pairwise monotonicity because the slope of E(Y ) takes on values outside the
interval of possible treatment effects for a binary outcome (-1 to 1).
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Figure 3: Distribution of Judge Leniency Measure
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Notes: This histogram shows the distribution of the CJIVE measure of judge leniency detailed in Section 7. The black
line shows a local linear regression of the instrument on the residualized treatment measure. The residuals are based
on a model that removes court-by-time fixed effects. For comparison, the figure also reports the estimated coefficient
on the CJIVE measure from a linear first-stage regression and the associated standard error clustered at the shift level.
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Figure 4: Illustration of Test of Pairwise Monotonicity and Strict Exclusion
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Notes: This figure provides an illustration of the test of joint test of strict exclusion and pairwise monotonicity rec-
ommended in the Frandsen et al. (2023a). The y-axis reports conviction rates while the x-axis reports judge-level
treatment propensities. The dots (in grey) correspond to the observed conviction and treatment propensity in our sam-
ple after controlling for court-by-time fixed effects. The test proposed in Frandsen et al. (2023a) is based on fitting a
flexible spline function to the observed data on conviction rates and treatment propensities. The solid line (in maroon)
shows the predicted values of the spline function fit to the observed data. Intuitively, the test examines two conditions:
(1) whether the fitted function meets slope restrictions implied by the range of possible treatment effect sizes; (2) if the
judge fixed effects have significant explanatory power after accounting for each judge’s predicted point on the fitted
function (i.e., whether the distance from the observed points to the fitted function are consistent with sampling varia-
tion). In this sample, the test rejects the null hypothesis at the one-percent significance level. Triangles (in green) are
simulated mean conviction rates that would be “close enough” to the fitted line to fail to reject the null hypothesis. In
a given setting, the definition of close is a function of both distance and the number of cases per judge. For this reason,
visual assessment is not a substitute for the formal statistical test proposed in proposed by Frandsen et al. (2023a).
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Appendix Table A.1: Applications of Examiner Researcher Designs in Economics

Topic Study Year Treatment Examiner Outcome(s)

Crime Kling 2006 Incarceration length Judge Employment, earnings
Crime Green and Winik 2010 Sentence Judge Recidivism
Crime Loeffler 2013 Imprisonment Judge Recidivism, unemployment

Crime
Di Tella and
Schargrodsky

2013 Monitoring method Judge Recidivism

Crime Aizer and Doyle 2015 Juvenile incarceration Judge
Educational attainment, adult
recidivism

Crime Mueller-Smith 2015 Incarceration Judge
Recidivism, employment outcomes,
public assistance

Crime Gupta et al. 2016 Money bail Bail judge Conviction, recidivism
Crime Leslie and Pope 2017 Pretrial detention Judge Conviction, recidivism
Crime Eren and Mocan 2018 Emotional shocks Judge Sentencing outcomes

Crime Bhuller et al. 2018 Parental incarceration Judge
Criminal justice outcomes, education,
employment

Crime Arteaga 2018 Parental incarceration Judge Children’s educational attainment
Crime Dobbie et al. 2018 Racial bias Bail Judge Misconduct bail rates
Crime Dobbie et al. 2018 Pretrial detention Judge Conviction, recidivism, employment
Crime Stevenson 2018 Pretrial detention Bail magistrates Conviction
Crime Ribeiro and Ferraz 2019 Pretrial detention Judge Recidivism
Crime Dobbie et al. 2019 Parental incarceration Judge Crime, education, employment
Crime White 2019 Incarceration Judge Voting
Crime Bhuller et al. 2020 Incarceration Judge Recidivism, employment

Crime Zapryanova 2020
Prison time, parole
time

Judge Recidivism

Crime Didwania 2020 Pretrial release Judge Case outcomes

Crime Norris et al. 2021
Parental/sibling
incarceration

Judge
Incarceration, education, teen
parenthood, neighborhood

Crime Agan et al. 2021
Misdemeanor
prosecution

District Attorney
Subsequent Crime involvement, local
crime

Crime Arbour 2021
Reintegration
program

Probation Officer Recidivism

Crime Bhuller et al. 2021 Incarceration Judge
Health of prisoners, prisoners’ family
members

Crime Eren and Mocan 2021
Juvenile crime
punishment

Judge
Adult recidivism, high school
completion

Crime Grau et al. 2021 Pretrial detention Judge Post-verdict labor market outcomes

Crime Augustine et al. 2022
Pretrial diversion
programs

Judge
Case outcomes, subsequent Crime
contact

Crime Jordan et al. 2022
Incarceration,
sentencing

Judge Recidivism

Crime
Alexeev and
Weatherburn

2022 Monetary penalty Judge Future crime, drug use

Crime Mello and Goncalves 2022
Sanctions for
speeding

Police officer Recidivism; speeding offenses

Crime Humphries et al. 2022
Incarceration,
convictions

Judge Recidivism

Crime Nix 2022 Asylum Judge Earnings

Finance Chang and Schoar 2006
Chapter 11
bankruptcy

Judge Re-filing for bankruptcy

Finance Dobbie and Song 2015
Chapter 13
bankruptcy

Judge Earnings, mortality, foreclosure rates

Finance Dobbie et al. 2017
Chapter 13
bankruptcy

Judge Adverse financial events

Finance
Rieber and
Schechinger

2019 Rating change Credit rating analyst Herding behavior

Finance Dippel and Frye 2021 Allotment of land US government
Employment, educational attainment,
location

(Continued on next page.)
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Appendix Table A.1: Applications of Examiner Researcher Designs in Economics (continued)

Finance Honigsberg and Jacob 2021 Expungement Arbitrators
Future misconduct, long-term career
prospects

Finance
Cheng, Severino, and
Townsend

2021
Out of court
settlement

Judge
financial distress (relative to in-court
settlement)

Finance Cespedes et al. 2021
Chapter 13
bankruptcy

Judge
Foreclosure rate, propensity to move,
crime rate

Health Doyle et al. 2015 Hospital quality
Ambulance
company

Patient health outcomes

Health Bakx et al. 2020
Nursing home
eligibility

Nursing home
assessor

Health, Healthcare spending

Health Blæhr and Søgaard 2021 Psychotherapy
Hospital
departments

Suicide attempts; Health and economic
outcomes

Health
Bos, Hertzberg, and
Liberman

2021
Mental-illness
diagnosis

Doctor
Health, labor market, wealth, family
outcomes

Health
Mullainathan and
Obermeyer

2022
Mental-illness
diagnosis

Doctor
Health, labor market, wealth, family
outcomes

Health Chan et al. 2022 Pneumonia diagnosis Radiologist Patient health
Health Eichmeyer and Zhang 2022 Medical care Physician Opiod use, fentanyl use

Patents
Galasso and
Schankerman

2015
Removing patent
rights

Judge
Subsequent research related to focal
patent

Patents
Galasso and
Schankerman

2018 Patent invalidation Judge
Subsequent innovation and exit by
patent holders

Patents Sampat and Williams 2019 Patent Investors
Subsequent research and commercial
investment

Patents Farre-Mensa et al. 2019 Patent Patent examinor
Subsequent employment growth, sales,
innovation

Public Doyle 2007 Foster care
Child protection
worker

Juvenile delinquency, teen
motherhood, employment

Public Doyle 2008 Foster care
Child protection
worker

Adult crime

Public Maestas et al. 2013 Disability benefits Disability examiner Labor supply

Public Doyle 2013 Foster care
Child protection
worker

Delinquency, health

Public Dahl et al. 2014 Receipt of a welfare Judge Participation in the next generation
Public French and Song 2014 Disability benefits Judge Labor supply

Public Hyman 2018
Trade Adjustment
Assistance

Case investigator Labor market outcomes

Public Humphries et al. 2019 Eviction Judge
Financial distress, residential mobility,
neighborhood

Public Collinson et al. 2022 Evictions Judge
Homelessness, earnings, access to
credit

Public
Hjalmarsson and
Lindquist

2019
Mandatory military
service

Draft officiator
Criminal behavior, post-service labor
market outcomes

Public Kostøl et al. 2019 Disability benefits Judge
Household income, consumption,
labor supply

Public
Diamond, Guren, and
Tan

2020 Foreclosure Judge
Housing stability, homeownership,
financial stress

Public Black et al. 2021 Disability benefits Judge Mortality

Public Baron and Gross 2022 Foster care
Child protection
worker

Children’s safety and educational
outcomes

Public Bald et al. 2022 Foster care
Child protection
worker

Child test scores, grade repetition

Public Baron and Gross 2022 Foster care
Child protection
worker

Adult arrests, convictions,
incarceration; child safety

Public Silver and Zhang 2022 Monthly cash benefits
Mental disorder
examiner

Food security, homelessness, debt,
health, mortality

Public Cohen 2022 Housing assistance Case manager
Homelessness, crime, income,
employment

Public Lee 2022 Residential housing Case manager Reincarceration

Notes: This table provides a survey of 70 studies in economics that have used examiner tendency research designs.
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A Examples with monotonicity violations
When treatment effects are heterogeneous and examiners differ in how they rank subjects for treat-
ment, Section 5.2 highlights that 2SLS identifies a proper weighted average of treatment effects
if an average monotonicity condition holds. This section provides stylized examples of cases in
which average monotonicity may or may not hold in the presence of violations of pairwise mono-
tonicity.

To begin, consider a setting in which bail judges assign defendants to pretrial detention or pre-
trial release. Each judge observes two characteristics for the defendant: (i) whether the defendant
has a criminal history and (ii) whether they belong to a majority racial group. Let ci and ri be in-
dicators for having a criminal history or being a majority racial group member, respectively. Each
judge j decides whether to detain defendant i by evaluating whether the defendant’s probability of
misconduct exceeds a judge-specific threshold τj(ri). Judges may set different thresholds based
on racial group status due to taste-based discrimination. Let Di(j) be a dummy variable indicating
whether person i would be assigned to pretrial detention by judge j. The fraction of the population
assigned to pretrial detention by judge j is measured by pj .

In this setting, we specify that the probability of misconduct depends only on criminal history.
Specifically, we assume that 50 percent of defendants with a criminal history and 30 percent of
those without a criminal history will engage in pretrial misconduct if released. Race could be indi-
rectly informative about misconduct if rates of criminal histories vary across demographic groups
(although we do not impose that condition in our examples below). We formalize taste-based
discrimination as instances in which judges apply a lower threshold for pretrial detention to defen-
dants in the minority group given a probability of pretrial misconduct. Specifically, their threshold
for individuals in the minority group is 0.4 lower than their threshold for people in the majority
group. For some possible judges, this setup can lead to patterns that are consistent with average
monotonicity but not pairwise monotonicity. It can also lead to violations of average monotonicity.
To illustrate the possible monotonicity violations, consider the following scenarios:

Case 1: Average monotonicity holds; pairwise monotonicity is violated. In the population,
suppose the following: 45% do not have a criminal record and belong to the majority group; 5%
do not have a criminal record and belong to minority group; 45% have a criminal record and
belong to the majority group, and 5% have a criminal record and belong to the minority group. In
other words, 50% of those in the majority and 50% of those in the minority groups have criminal
records. There are four judges, and we assume that judges 1 and 3 discriminate against members
of the minority group by having a 0.4 lower threshold for detention.

Appendix Table A.2 (below) summarizes treatment outcomes for defendants assuming that
each judge has an equal caseload. Each labelled column reports the potential treatment outcomes
for each of the four types of defendants defined by the two observed characteristics. For example,
column 1 shows that no judge assigns defendants who are majority group members without a
criminal record to treatment. This is because the probability of misconduct is 30% for individuals
without a criminal record and this falls below all judges’ thresholds for the majority group.

In this example, pairwise monotonicity does not hold because judge 2, whose propensity to
treat is 0.5, assigns people in the minority group without a criminal record to pretrial release, while
judge 3, whose propensity to treat is 0.1, assigns them to pretrial detention. However, average
monotonicity holds because the covariance between potential treatment status and judge propensity
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to treat is nonnegative for all types of defendants.

Appendix Table A.2: Pairwise Monotonicity is Violated and Average Monotonicity

Potential Treatment Status, Di(j)
by Defendant Type

(1) (2) (3) (4)

τj No criminal history Criminal history

Judge Discriminator? Majority Minority Majority Minority Majority Minority pj

1 Yes 0.4 0.0 0 1 1 1 0.55
2 No 0.5 0.5 0 0 1 1 0.50
3 Yes 0.6 0.2 0 1 0 1 0.10
4 No 0.7 0.7 0 0 0 0 0.00

Covariance of Di(j) and pj for defendant type 0 0.019 0.119 0.072

Notes: This table is an example in which judge behavior violates pairwise monotonicity while average mono-
tonicity holds. The four columns labelled to the right indicate the potential treatment statusDi(j) for defendants
defined by whether (i) they have observabled criminal backgrounds and (ii) whether they are members of a mi-
nority or majority group. The four rows of the table list each judge j, where two of the judges discriminate
against members of a minority group by imposing a lower threshold (τj). Each row (at right) reports the popu-
lation weighted likelihood of treatment for each judge (pj). The bottom row of the table reports the covariance
of potential treatment status and judge-specific treatment probability across the four judges, conditional on the
type of defendant.

Case 2: Average monotonicity is violated. Consider Case 1 while removing judge 1 from the
example. Appendix Table A.3 shows that both average monotonicity and pairwise monotonicity
are violated in this scenario. This case with the three remaining judges illustrates that the satisfac-
tion of monotonicity conditions can be sensitive to which judges are included in the sample. This
is not specific to average monotonicity; if we start with Case 1 and remove judge 3, then pairwise
monotonicity (and, therefore, average monotonicity) would hold.

Appendix Table A.3: Both Pairwise Monotonicity and Average Monotonicity Violated

Potential Treatment Status, Di(j)
by Defendant Type

(1) (2) (3) (4)

τj No criminal history Criminal history

Judge Discriminator? Majority Minority Majority Minority Majority Minority pj

2 No 0.5 0.5 0 0 1 1 0.50
3 Yes 0.6 0.2 0 1 0 1 0.10
4 No 0.7 0.7 0 0 0 0 0.00

Covariance of Di(j) and pj for defendant type 0 -0.033 0.100 0.067

Notes: This table is a stylized example in which judge behavior violates both pairwise and average monotonitic-
ity. See Appendix Table A.2 for detailed notes.
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B Detailed discussion of multiple treatments frameworks
Bhuller and Sigstad (2023) and Humphries et al. (2023) provide frameworks in which 2SLS can
identify positively weighted averages of the effects of multiple treatments in examiner tendency
designs. Specifically, Bhuller and Sigstad (2022) show when linear 2SLS with multiple endoge-
nous treatments using examiner propensities for each treatment as excluded instruments identifies
proper weighted causal effects. By contrast, Humphries et al. (2023) shows when 2SLS controlling
for non-focal propensities identifies proper weighted average effects of a focal treatment. This ap-
pendix describes the conditions in each framework in turn, and then develops an important special
case in which they are equivalent: that of three mutually exclusive treatments and three examiners.

First, we establish notation in the case of three mutually exclusive treatment categories and
three examiners that will be useful for both frameworks. For individual i, we index the treatment
categories by Di ∈ {0, 1, 2} and the three possible examiners by Ji ∈ {0, 1, 2}.38 Let Dsi :=
1 (Di = s) be an indicator for actually receiving treatment s, and ps (Ji) = E [Dsi|Ji] be the
propensity of the examiner to assign individuals to treatment s. Denote potential treatment status
asDsi (j) which is an indicator for receipt of treatment s if the individual is assigned to examiner j.
There are several “margins” of treatment effects given the multiple treatments in this context. The
natural treatment effects of interest compare potential outcomes under treatment s to a reference
treatment which is designated by zero: δ0→si := Yi (s) − Yi (0), where Yi (s) is individual i’s
potential outcome under treatment s. The goal in the Bhuller and Sigstad (2022) framework is to
identify proper weighted averages of δ0→1

i and δ0→2
i as coefficients on the indicators D1i and D2i

from 2SLS estimation of the equation:

Yi = α + δ1D1i + δ2D2i + εi,

where p1 (Ji) and p2 (Ji) are the excluded instruments. In the Humphries et al. (2023) frame-
work the goal similar: identify proper weighted averages of a focal treatment, controlling (perhaps
linearly) for non-focal propensities:

Yi = α + δ1D1i + πp2 (Ji) + εi.

In what follows below, we adapt the identifying assumptions from Bhuller and Sigstad (2022)
and Humphries et al. (2023) to this setting. Throughout, we assume that examiners are assigned
randomly, vary sufficiently in their propensities (i.e., they satisfy the instrument rank condition),
and only influence outcomes through Di. Note that some of the assumptions below invoke the
concept of partial correlation. The partial correlation between random variables A and B given C
is equal to the usual (Pearson) correlation between the residuals from a linear regression of A on
C and the residuals from a linear regression of B on C.

B.1 Bhuller and Sigstad (2023) Assumptions
In the following assumptions, consider Ji (individual i’s examiner assignment) to be a random
variable for each individual i, whose distribution is determined by the mechanism assigning ex-

38The index notation that we chose is intentional. As discussed below, the Bhuller and Sigstad conditions imply a
mapping between examiners and treatments.
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aminers to individuals. Therefore, D1i (Ji), D2i (Ji), p1 (Ji), and p2 (Ji) are also random variables
for each individual i. The following assumptions govern the relationships among these random
variables for each individual i.

• Average conditional monotonicity (ACM). ACM is defined for each specific treatment given
another. ACM of treatment 1 given p2 (Ji), denoted ACM(1|2), requires that, for every
individual i, the partial correlation between p1 (Ji) andD1i (Ji) given p2 (Ji) be nonnegative.
In other words, a hypothetical examiner-level linear regression of D1i (Ji) on p1 (Ji) and
p2 (Ji) yields a positive coefficient on p1 (Ji) for each individual i. ACM of treatment 2
given p1 (Ji) is defined similarly.

• No cross effects (NC). NC is also defined specifically for each treatment. The NC condition
for treatment 1 given p2 (Ji), denoted NC(1|2), says that, for every individual i, the partial
correlation between p1 (Ji) and D2i (Ji) is zero. The NC condition for treatment 2 is defined
similarly.

Intuitively, assumptions ACM(1|2) and NC(1|2) together ensure that increasing p1 (Ji), control-
ling linearly for p2 (Ji), on average increases D1i (Ji) and on average has zero effect on D2i (Ji).
The key consequence is that the 2SLS coefficient on D1i in a model with D1i and D2i as en-
dogenous regressors and p1 (Ji) and p2 (Ji) as excluded instruments identifies a proper weighted
average of δ0→1

i . Similarly, ACM(2|1) and NC(2|1) imply that the coefficient on D2i identifies a
proper weighed average of δ0→2

i .

B.2 Humphries et al. (2023) Assumptions
The conditions in Humphries et al. (2023) consider variation in treatment assignment holding the
examiner propensity for one of the treatments fixed. In the case of three examiners, this means
considering how treatment status would change if an individual were switched between two ex-
aminers who have the same propensity for one of the treatments. To make the assumption below
concrete, suppose examiner Ji = 1 has higher propensity for treatment 1 than examiner Ji = 0, but
they have equal propensities for treatment 2 (i.e., p1 (1) > p1 (0) and p2 (0) = p2 (1)). Similarly,
suppose that examiner Ji = 2 has higher propensity for treatment 2 than examiner 0, but they have
equal propensities for treatment 1 (i.e., p2 (2) > p2 (0) and p1 (0) = p1 (2)). Humphries et al.
(2023) provide the following assumption under which the coefficient on D1i in an IV procedure
that employs p1 (Ji) as the excluded instrument and conditions (perhaps nonparametrically) on
p2 (Ji) will recover a proper weighted average of δ0→1

i .

• Unordered partial monotonicity (UPM). UPM of treatment 1 given treatment 2, denoted
UPM(1|2) means the following hold for all i:

1. D1i(1) ≥ D1i(0)

2. D0i(1) ≤ D0i(0)

3. D2i(1) = D2i(0)

UPM(1|2) implies that, if an individual were to switch from examiner 0 to examiner 1 (which
increases p1 (Ji) holding p2 (Ji) fixed), that individual might switch into treatment 1, but
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would never switch out. The second inequality means the individual might switch out of
treatment 0, but would never switch in. The equality means no individual’s treatment 2
status would change when switching from examiner 0 to examiner 1.39 In other words, the
only change that could happen if an individual were to switch from examiner 0 to examiner 1
is a switch from treatment 0 to treatment 1. Similarly, UPM(2|1) means that the only change
that could happen if an individual were to switch from examiner 0 to examiner 2 (which
increases p2 (Ji) holding p1 (Ji) constant) is a switch from treatment 0 to treatment 2.

In the current special case where examiners 0 and 1 have identical propensities for treatment
2 and examiners 0 and 2 have identical propensities for treatment 1, the assumption UPM(1|2)
implies that the 2SLS coefficient on D1i, with p1 (Ji) as the excluded instrument and conditioning
on p2 (Ji), identifies a proper weighted average of δ0→1

i .
Here “conditioning on p2 (Ji)” is equivalent to including it as a linear control because p2 (Ji)

takes on only two values. Beyond this special case, however, conditioning on p2 (Ji) would either
require nonparametrically controlling for p2 (Ji), or assuming additionally that E [p1i (Ji) |p2 (Ji)]
is linear in p2 (Ji).

Identifying proper weighted averages of δ0→2
i requires the analogous assumption UPM(2|1). If

both UPM(1|2) and UPM(2|1) hold, then 2SLS estimation with both D1i and D2i as endogenous
regressors and p1 (Ji) and p2 (Ji) as excluded instruments identifies effects of both treatments.

B.3 Equivalence of Results
In this just identified example, the Bhuller and Sigstad (2022) assumptions are equivalent to the
Humphries et al. (2023) assumptions. That is, ACM(1|2), ACM(2|1), NC(1|2), and NC(2|1) imply
UPM(1|2) and UPM(2|1) and vice versa. To see this, note that these assumptions restrict only how
individuals’ treatment status responds to examiner assignment. The two sets of assumptions are
equivalent if they allow the same responses of individual treatment status to examiner assignment.

There are 27 possible ways that the three examiners can allocate a defendant to one of three
treatments. Appendix Table A.4 below lists all the possible treatment permutations. We’ll refer
to each treatment permutation as a “response type.” Each response type is defined by its potential
treatment states as a function of examiner assignment: (Di (0) , Di (1) , Di (2)) ∈ {0, 1, 2}3. For
example, the response type “always 0” is allocated to treatment 0 by all three examiners, and so
has potential treatment states (0, 0, 0).

The second column of the table shows that the Bhuller and Sigstad (2022) assumptions, ACM(1|2),
ACM(2|1), NC(1|2), and NC(2|1), allow only six response types:

• (0, 0, 0)

• (1, 1, 1)

• (2, 2, 2)

• (0, 1, 0)

39In Humphries et al. (2023), the equality is expressed as a weak inequality, but in our three-examiner, three-
treatment scenario here where examiners 0 and 1 share the same propensity for treatment 2, the weak inequality must
be satisfied with equality.
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• (0, 0, 2)

• (0, 1, 2).

The third column shows that the Humphries et al. (2023) assumptions, UPM(1|2) and UPM(2|1),
allow the same six response types. It also shows how each of the prohibited response types violates
those assumptions.

The two sets of assumptions make identical restrictions on how individual treatment status
responds to examiner assignment, and therefore are equivalent in this special case.

The argument above establishes via brute force that the two assumptions are equivalent. Further
intuition is provided in Figure A.1 which illustrates the pattern of treatment assignment that must
occur in this setting. The rows represent each of the three judges while the columns represent the
six allowed response types. The pattern in each cell of the figure indicates whether defendants of a
given response type would be assigned to treatment 0 (dots), 1 (crosshatch dots) or 2 (crosshatch)
when they are assigned to a specific examiner.

Figure A.1 below illustrates three response types that we might describe as “always-takers” of
one of the three treatments. Defendants whose potential treatment status is defined by the vector
(0,0,0) always receive treatment 0. Similarly, response types (1,1,1), and (2,2,2) receive the same
treatment regardless of examiner assignment. For the remaining three response types, treatment
status varies with examiner assignment. All of them will be assigned to treatment 0 if assigned
to examiner 0. Examiner 1 moves some of them into treatment 1, and examiner 2 moves some of
them into treatment 2.

The figure demonstrates that not only do the allowable response types imply the existence of
a reference treatment, they also imply the existence of a reference examiner. Identification of
the average effects δ̄1 and δ̄2 effects is possible because a comparison between those assigned to
examiners 1 and 0 isolates the impact of receiving treatment 1 relative to treatment 0. Similarly, the
comparison between those assigned to examiners 2 and 0 isolates the impact of receiving treatment
2 relative to treatment 0. For a researcher to argue that only the six allowed response types will
exist in their setting, they must be willing to argue that there is a labeling of examiners such that
one is the reference examiner, while the other examiners only move people across exactly one
treatment margin relative to the reference examiner.
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Appendix Table A.4: Response types allowed under ACM, NC, and UPM Assumptions

(1) (2) (3)

Response type: Satisfies ACM
(D(0),D(1),D(2)) and NC conditions? Satisfies UPM inequalities?

(0,0,0) Yes Yes

(0, 0, 1) No Violates UPM(2|1) #3

(0,0,2) Yes Yes

(0,1,0) Yes Yes

(0, 1, 1) No Violates UPM(2|1) #3

(0,1,2) Yes Yes

(0, 2, 0) No Violates UPM(1|2) #3

(0, 2, 1) No Violates UPM(1|2) #3 and UPM(2|1) #3

(0, 2, 2) No Violates UPM(1|2) #3

(1, 0, 0) No Violates UPM(1|2) #1 & #2 and UPM(2|1) #2 & #3

(1, 0, 1) No Violates UPM(1|2) #1 & #2

(1, 0, 2) No Violates UPM(1|2) #1 & #2 and UPM(2|1) #3

(1, 1, 0) No Violates UPM(2|1) #2 & #3

(1,1,1) Yes Yes

(1, 1, 2) No Violates UPM(2|1) #3

(1, 2, 0) No Violates UPM(1|2) #1 & #3 and UPM(2|1) #2 & #3

(1, 2, 1) No Violates UPM(1|2) #1 & #3

(1, 2, 2) No Violates UPM(1|2) #1 & #3 and UPM(2|1) #3

(2, 0, 0) No Violates UPM(1|2) #2 & #3 and UPM(2|1) #1 & #2

(2, 0, 1) No Violates UPM(1|2) #2 & #3 and UPM(2|1) #1 & #3

(2, 0, 2) No Violates UPM(1|2) #2 & #3

(2, 1, 0) No Violates UPM(1|2) #3 and UPM(2|1) #1 & #2

(2, 1, 1) No Violates UPM(1|2) #3 and UPM(2|1) #1 & #3

(2, 1, 2) No Violates UPM(1|2) #3

(2, 2, 0) No Violates UPM(2|1) #1 & #2

(2, 2, 1) No Violates UPM(2|1) #1 & #3

(2,2,2) Yes Yes

Notes: This table demonstrates the equivalence of the assumptions proposed in Bhuller and Sigstad (2022)
and Humphries et al. (2023) in a setting with three distinct treatments and three judges. Each row is one of
the 27 possible treatment permutations for the three judges. We refer to each row as a “response type” which
is defined by potential treatment states as a function of examiner assignment. For example, the first row is the
response type for “always 0” which is the type of defendant who is allocated to treatment 0 by all examiners.
In this setting, there are a total of four ACM and NC conditions from Bhuller and Sigstad (2022). Column
2 shows that only six response types are possible when these four conditions hold. In the framework from
Humphries et al. (2023), there are two UPM conditions that have associated inequality conditions. Column 3
shows that the associated UPM inequalities hold for the six response types that are possible when the ACM
and NC conditions hold.
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Appendix Figure A.1: Six Potential Treatment Response Types and Treatment Assignment

J = 0

J = 1

J = 2

Receives Di = 0

Receives Di = 1

Receives Di = 2

{0,0,0} {0,0,2} {0,1,2} {0,1,0} {1,1,1} {2,2,2}

Notes: This figure illustrates the pattern of treatment assignment that must hold to satisfy the conditions in Bhuller
and Sigstad (2022) and Humphries et al. (2023) in a three examiner and three treatment setting. The rows represent
examiners while the columns represent the six response types (i.e., potential treatment status for a group of defendants)
that are permitted. The pattern in each cell indicates whether a defendant of a given response type would be assigned
to treatment 0 (dots), 1 (crosshatch dots) or 2 (crosshatch) when they are assigned to a specific examiner.
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